57 research outputs found

    Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability

    Get PDF
    Combustion of electric wires is the most probable cause of fire in human space activities. Therefore, the fire performance of electric wires in microgravity conditions must be thoroughly analyzed. This study investigates the opposed-flow flame spread and its limits in electric wires preheated by external radiation, under both normal gravity and microgravity, to understand their fire performance when exposed to external heat sources in such gravity conditions. The experiments were performed on low-density polyethylene (LDPE)-insulated copper (Cu) wires having an outer diameter of 4 mm and differing in core diameter (2.5 and 0.7 mm, corresponding to insulation thicknesses of 0.75 and 1.65 mm, respectively). Both standard and black LDPE insulations were used to study the effect of radiation absorption on the wire preheating and subsequent flame spread. The comparison of the flame spread limits revealed that the wire with the thicker Cu core was less flammable under both normal gravity and microgravity; in particular, its flammability further decreased in the case of microgravity, in contrast with thinner electric wires (1 mm outer diameter), which exhibited higher flammability in the same gravity condition. These results suggest that different mechanisms, for thicker and thinner wires, determining the critical conditions to sustain flame spread under microgravity. This study provides valuable information about the fire performance of electric wires in space gravity

    Effects of spatial resolution of the data on dynamic mode decomposition and its quantitative analysis

    No full text
    Dynamic mode decomposition (DMD), based on Koopman analysis, is a tool capable of spatiotemporal analysis for various spatial resolutions, from one-dimensional signals to three-dimensional computational fluid dynamics (CFD) and experimental data. Outputs of the DMD consist of amplitudes, frequencies, decaying rates, and spatial modes. However, the effects of spatial resolution (time-series data in one-dimensional signal and spatial grid in two-dimensional data) and quantitative analysis of DMD are limited to one-dimensional signal data. In this study, the effects of spatial resolution with a fixed time scale of data and correction using scaling factors 2/sqrt(A) on DMD amplitudes and sqrt(A) on DMD spatial mode strengths are investigated, where A is the number of the time-series data in one-dimensional signal or the number of the spatial grid in two-dimensional data. First, proofs of the scaling factors for one-dimensional(line layout) and two-dimensional(grid layout) data are presented. Second, the effect of spatial resolution on the amplitudes and spatial mode strengths and their scaled results are confirmed using one-dimensional artificial signal data, two-dimensional artificial signal field data, two-dimensional vortex shedding simulation data, and two-dimensional pulsating flow experimental data with various data resolutions. The results show that the amplitude increases proportionally with the spatial resolution, and the spatial mode strength is inversely proportional to the time series or spatial resolution of the data in all cases. As a result of applying the scaling factors to one-dimensional artificial signal and two-dimensional artificial signal field data, the amplitudes and spatial modes contain the same values regardless of the change in spatial resolutions. The scaled amplitudes and spatial mode strengths on vortex shedding simulation and two-dimensional laminar pulsating jet show good agreements with slight differences, regardless of the spatial resolution change. The proposed scaling factor can be applied to compare data quantitatively obtained with different spatial resolutions

    Diffusion Flame Behavior by a Burner of Porous Cylinder in Electrical Fields

    No full text

    A Basic Behavior of CNG DI Combustion in a Spark-Ignited Rapid Compression Machine

    No full text
    A basic characteristics of compressed natural gas direct-injection (CNG DI) combustion was studied by using a rapid compression machine. Results show that comparing with homogeneous mixture, CNG DI has short combustion duration, high pressure rise due to combustion, and high rate of heat release, which are considered to come from the charge stratification and the gas flow generated by .the fuel injection. CNG DI can realize extremely lean combustion which reaches 0.03 equivalence ratio, φ. Combustion duration, maximum pressure rise due to combustion and combustion efficiency are found to be insensitive to the injection modes. Unburned methane showed almost the same level as that of homogeneous mixture combustion. CO increased steeply with the increase in φ when φ was greater than 0.8 due to the excessive stratification, and NO_x peak value shifted to the region of lower φ. Combustion inefficiency maintains less than 0.08 in the range of φ from 0.1 to 0.9 and increases at very low φ due to bulk quenching and at higher φ due to excessive stratification. The combustion efficiency estimated from combustion products shows good agreement with that of heat release analysis

    Interaction Effects on Combustion of Alcohol Droplet Pairs

    No full text
    Experimental investigation was conducted on two droplet-array combustion of methanol and methanol/dodecanol mixture fuels in microgravity. For methanol, effects of ambient pressure and droplet spacing were examined. Results show that the droplet lifetime decreases with increasing spacing at relatively low pressure and the droplet lifetime becomes independent of spacing at higher-subcritical and supercritical pressures. For methanol/dodecanol mixture, effects of pressure, fuel composition were investigated in terms of occurrence of disruption. Disruption of droplet during combustion was demonstrated both for single droplet and droplet pairs
    corecore