6,105 research outputs found

    Toward a systems understanding of plant–microbe interactions

    Get PDF
    Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors. Therefore, it is important to have systems views in order to understand the true nature of plant–microbe interactions. Indeed, systems biology approaches have revealed previously overlooked or misinterpreted properties of the plant immune signaling network. Experimental reconstruction of biological networks using exhaustive combinatorial perturbations is particularly powerful to elucidate network structure and properties and relationships among network components. Recent advances in metagenomics of microbial communities associated with plants further point to the importance of systems approaches and open a research area of microbial community reconstruction. In this review, we highlight the importance of a systems understanding of plant–microbe interactions, with a special emphasis on reconstruction strategies

    High efficiency multifrequency feed

    Get PDF
    Antenna systems and particularly compact and simple antenna feeds which can transmit and receive simultaneously in at least three frequency bands, each with high efficiency and polarization diversity are described. The feed system is applicable for frequency bands having nominal frequency bands with the ratio 1:4:6. By way of example, satellite communications telemetry bands operate in frequency bands 0.8 - 1.0 GHz, 3.7 - 4.2 GHz and 5.9 - 6.4 GHz. In addition, the antenna system of the invention has monopulse capability for reception with circular or diverse polarization at frequency band 1

    Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy

    Full text link
    We studied LaAlO3/SrTiO3 interfaces for varying LaAlO3 thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting "n-type" interfaces, Ti3+ signals appeared, which were absent for insulating "p-type" interfaces. The Ti3+ signals increased with LaAlO3 thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO3 thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness

    Generalized Lagrangian of N = 1 supergravity and its canonical constraints with the real Ashtekar variable

    Full text link
    We generalize the Lagrangian of N = 1 supergravity (SUGRA) by using an arbitrary parameter ξ\xi, which corresponds to the inverse of Barbero's parameter β\beta. This generalized Lagrangian involves the chiral one as a special case of the value ξ=±i\xi = \pm i. We show that the generalized Lagrangian gives the canonical formulation of N = 1 SUGRA with the real Ashtekar variable after the 3+1 decomposition of spacetime. This canonical formulation is also derived from those of the usual N = 1 SUGRA by performing Barbero's type canonical transformation with an arbitrary parameter β(=ξ−1)\beta (=\xi^{-1}). We give some comments on the canonical formulation of the theory.Comment: 17 pages, LATE

    On Einstein-Hilbert type action of superon-graviton model(SGM)

    Get PDF
    The fundamental action of superon-graviton model(SGM) of Einstein-Hilbert type for space-time and matter is written down explicitly in terms of the fields of the graviton and superons by using the affine connection formalism and the spin connection formalism. Some characteristic structures including some hidden symmetries of the gravitational coupling of superons are manifested (in two dimensional space-time) with some details of the calculations. SGM cosmology is discussed briefly.Comment: 20 pages, Latex, some more discussions and new references adde

    Third-order integrable difference equations generated by a pair of second-order equations

    Full text link
    We show that the third-order difference equations proposed by Hirota, Kimura and Yahagi are generated by a pair of second-order difference equations. In some cases, the pair of the second-order equations are equivalent to the Quispel-Robert-Thomson(QRT) system, but in the other cases, they are irrelevant to the QRT system. We also discuss an ultradiscretization of the equations.Comment: 15 pages, 3 figures; Accepted for Publication in J. Phys.

    Canonical formulation of N = 2 supergravity in terms of the Ashtekar variable

    Full text link
    We reconstruct the Ashtekar's canonical formulation of N = 2 supergravity (SUGRA) starting from the N = 2 chiral Lagrangian derived by closely following the method employed in the usual SUGRA. In order to get the full graded algebra of the Gauss, U(1) gauge and right-handed supersymmetry (SUSY) constraints, we extend the internal, global O(2) invariance to local one by introducing a cosmological constant to the chiral Lagrangian. The resultant Lagrangian does not contain any auxiliary fields in contrast with the 2-form SUGRA and the SUSY transformation parameters are not constrained at all. We derive the canonical formulation of the N = 2 theory in such a manner as the relation with the usual SUGRA be explicit at least in classical level, and show that the algebra of the Gauss, U(1) gauge and right-handed SUSY constraints form the graded algebra, G^2SU(2)(Osp(2,2)). Furthermore, we introduce the graded variables associated with the G^2SU(2)(Osp(2,2)) algebra and we rewrite the canonical constraints in a simple form in terms of these variables. We quantize the theory in the graded-connection representation and discuss the solutions of quantum constraints.Comment: 19 pages, Latex, corrected some typos and added a referenc

    Heterogeneity Induced Order in Globally Coupled Chaotic Systems

    Get PDF
    Collective behavior is studied in globally coupled maps with distributed nonlinearity. It is shown that the heterogeneity enhances regularity in the collective dynamics. Low-dimensional quasiperiodic motion is often found for the mean-field, even if each element shows chaotic dynamics. The mechanism of this order is due to the formation of an internal bifurcation structure, and the self-consistent dynamics between the structures and the mean-field. Keywords: Globally Coupled Map with heterogeneity, Collective behaviorComment: 11 pages (Revtex) + 4 figures (PostScript,tar+gzip
    • …
    corecore