67 research outputs found

    Cover Picture: Ann. Phys. 2'2018

    Get PDF
    In article number 1700256, Emanuele Verrelli and co‐workers propose that cluster beam deposition of sub‐2nm magic number Au clusters, Au20 and Au55, on flat surfaces reveals a rich evolution of the phenomena taking place at substrate level. New magic number clusters have been formed via coalescence of neighbouring clusters, such as Au561. Experimental and simulation results reveal that neighbouring clusters on the substrate coalesce only when the distance from their nearest neighbour cluster is below a critical mark of 0.5 nm

    Novel conducting polymer current limiting devices for low cost surge protection applications

    Get PDF
    We report on the development of novel intrinsic conducting polymer two terminal surge protection devices. These resettable current limiting devices consist of polyaniline nanofibres doped with methane sulphonic acid electrochemically deposited between two 55 μm spaced gold electrodes. At normal applied voltages, the low resistance devices act as passive circuit elements, not affecting the current flow. However during a current surge the devices switch from ohmic to non-ohmic behaviour, limiting current through the device. After the current surge has passed, the devices reset back to their original state. Our studies show that a partial de-doping/re-doping process caused by the rapid diffusion of moisture out of or into the polymer film during joule heating/cooling is the underlying mechanism responsible

    Raman enhancement of rhodamine adsorbed on Ag nanoparticles self-assembled into nanowire-like arrays

    Get PDF
    This work reports on Raman scattering of rhodamine (R6G) molecules absorbed on either randomly distributed or grating-like arrays of approximately 8-nm Ag nanoparticles developed by inert gas aggregation. Optimal growth and surface-enhanced Raman scattering (SERS) parameters have been obtained for the randomly distributed nanoparticles, while effects related to the aging of the silver nanoparticles were studied. Grating-like arrays of nanoparticles have been fabricated using line arrays templates formed either by fracture-induced structuring or by standard lithographic techniques. Grating structures fabricated by both methods exhibit an enhancement of the SERS signal, in comparison to the corresponding signal from randomly distributed Ag nanoparticles, as well as a preferential enhancement in the areas of the sharp features, and a dependence on the polarization direction of the incident exciting laser beam, with respect to the orientation of the gratings structuring. The observed spectroscopic features are consistent with a line-arrangement of hot-spots due to the self- alignment of metallic nanoparticles, induced by the grating-like templates

    Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite

    Get PDF
    Phosphorus (P) recovery from wastewater is of great interest especially when the loaded adsorbent can be used in the agriculture as slow-release fertilizer. The application depends on environmental concerns related to the chemical modification of the adsorbent and the release of toxic compounds from the loaded material to the soil or the water during adsorption. The present work focused on the phosphate (PO4-P) removal from aqueous solutions under low P concentrations (0.5–10mg/L) by using Ca(OH)2-pretreated natural zeolite (CaT-Z). As activation agent, Ca(OH)2 presents benefits in terms of pretreatment costs and environmental impact of the applied adsorbent. The pretreatment of natural zeolite (clinoptilolite) with 0.25mol/L Ca(OH)2 led to an increase of P removal from 1.7 to 97.6% at initial P concentration of 10mg/L, pH 7 and 298K. Low residual concentrations of 81–238μg P/L were achieved at 298K rendering CaT-Z a promising sorbent for tertiary wastewater treatment. At 200mg P/L, the adsorption capacity was 7.57mg P/g CaT-Z. The P removal efficiency was pH-independent suggesting a beneficial use of CaT-Z under acidic and alkaline conditions. Adsorption was found to be an endothermic and slow process reaching equilibrium after 120h, whereas the half of the PO4-P was adsorbed in the first 8h. The applied kinetic models showed that both film and intraparticle diffusion contributed to phosphate removal. Phosphate sorption decreased in the presence of the anionic surfactant SDS, Fe2+, HCO3−, acetate and citrate anion. The predominant mechanisms of ligand exchange and Ca-P surface precipitation were confirmed by the IR-ATR and SEM-EDS analyses, respectively

    A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia

    Get PDF
    Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase⁻sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM

    A new threat from an old enemy: Re‑emergence of coronavirus (Review)

    Get PDF
    The new outbreak of coronavirus from December 2019 has brought attention to an old viral enemy and has raised concerns as to the ability of current protection measures and the healthcare system to handle such a threat. It has been known since the 1960s that coronaviruses can cause respiratory infections in humans; however, their epidemic potential was understood only during the past two decades. In the present review, we address current knowledge on coronaviruses from a short history to epidemiology, pathogenesis, clinical manifestation of the disease, as well as treatment and prevention strategies. Although a great amount of research and efforts have been made worldwide to prevent further outbreaks of coronavirus‑associated disease, the spread and lethality of the 2019 outbreak (COVID‑19) is proving to be higher than previous epidemics on account of international travel density and immune naivety of the population. Only strong, joint and coordinated efforts of worldwide healthcare systems, researchers, and pharmaceutical companies and receptive national leaders will succeed in suppressing an outbreak of this scale

    Chemical Wave Computing from Labware to Electrical Systems

    Get PDF
    Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and enable a more detailedinvestigation of their capacity. As expected, the computerized counterparts of the laboratory based experiments are faster and less expensive. A further step of acceleration in wave-based computingis the development of electrical circuits that imitate the dynamics of chemical computers. A key component of the electrical circuits is the memristor which facilitates the non-linear behavior of the chemical systems. As part of this concept, the road-map of the inspiration from wave-based computing on chemical media towards the implementation of equivalent systems on oscillating memristive circuits was studied here. For illustration reasons, the most straightforward example was demonstrated, namely the approximation of Boolean gates

    Strange homelands: encountering the migrant on the contemporary Greek stage

    Get PDF
    This article examines three examples from recent Greek theatre which stage experiences of migrants and refugees against the backdrop of Greece’s growing internationalism and multiculturalism. In allowing migrants to author their own narratives of border-crossing and encountering their new “homeland”, those theatrical endeavours, I argue, attempt to break the monologism of Greek theatre and monolithic understandings of national identity thus opening up spaces for encountering diverse voices. In acknowledging the risks and tensions underpinning the migrant’s presence on stage, the article also applies pressure to questions of encounter, authenticity, representation and self-expression of migratory subjects and interrogates some ways in which they navigate their precarious space of belonging and author themselves in the context of contemporary Greek theatre

    Inmate cancer patients – highlighting the importance of a holistic approach to oncological care

    Get PDF
    Purpose: Inmate oncologic patients' rates increased drastically worldwide. Elderly, limited exercise, unhealthy diet, hepatitis, HIV+ status, tobacco and alcohol use, constitute the main cancer risk factors. We present an outline of practical oncological management and ethical thinking, in the specific environment of a detention facility. Methods: PubMed, Cochrane Database of Controlled Trials, SCOPUS and grey literature were extensively searched upto October 2021. Ιncarcerated oncologic patients experiencevarious everyday challenges:their confinement in high securityfacilities, the lack of access to critical care and related ethicaldilemmas inherent to the context of a correctional facility. Results: The detention facilities may be inadequate in providing early cancer diagnosis and appropriate care mainlydue to a lack of specialized personnel, b) in-house or in external specialized cancer hospitals, care variability (e.g. admissions in small local or regional hospitals), c) delays inproviding access and d) gatekeeper systems. There is a paucity of administration of a) systemic therapy(chemotherapy, targeted drug therapy etc), b) radiotherapy, c)palliative care, and d) enrollment in clinical trials.  Conclusions: Correctional facilities must encourage teamwork between healthcare and correctional professionals inorder to improve the provided anticancer care
    corecore