21 research outputs found

    Deep Learning for Semantic Part Segmentation with High-Level Guidance

    Full text link
    In this work we address the task of segmenting an object into its parts, or semantic part segmentation. We start by adapting a state-of-the-art semantic segmentation system to this task, and show that a combination of a fully-convolutional Deep CNN system coupled with Dense CRF labelling provides excellent results for a broad range of object categories. Still, this approach remains agnostic to high-level constraints between object parts. We introduce such prior information by means of the Restricted Boltzmann Machine, adapted to our task and train our model in an discriminative fashion, as a hidden CRF, demonstrating that prior information can yield additional improvements. We also investigate the performance of our approach ``in the wild'', without information concerning the objects' bounding boxes, using an object detector to guide a multi-scale segmentation scheme. We evaluate the performance of our approach on the Penn-Fudan and LFW datasets for the tasks of pedestrian parsing and face labelling respectively. We show superior performance with respect to competitive methods that have been extensively engineered on these benchmarks, as well as realistic qualitative results on part segmentation, even for occluded or deformable objects. We also provide quantitative and extensive qualitative results on three classes from the PASCAL Parts dataset. Finally, we show that our multi-scale segmentation scheme can boost accuracy, recovering segmentations for finer parts.Comment: 11 pages (including references), 3 figures, 2 table

    Multi-cue Mid-level Grouping

    Full text link
    Abstract. Region proposal methods provide richer object hypotheses than sliding windows with dramatically fewer proposals, yet they still number in the thousands. This large quantity of proposals typically re-sults from a diversification step that propagates bottom-up ambiguity in the form of proposals to the next processing stage. In this paper, we take a complementary approach in which mid-level knowledge is used to re-solve bottom-up ambiguity at an earlier stage to allow a further reduction in the number of proposals. We present a method for generating regions using the mid-level grouping cues of closure and symmetry. In doing so, we combine mid-level cues that are typically used only in isolation, and leverage them to produce fewer but higher quality proposals. We empha-size that our model is mid-level by learning it on a limited number of objects while applying it to different objects, thus demonstrating that it is transferable to other objects. In our quantitative evaluation, we 1) establish the usefulness of each grouping cue by demonstrating incre-mental improvement, and 2) demonstrate improvement on two leading region proposal methods with a limited budget of proposals.

    Lifetime radiation exposure in patients with hydrocephalus does not exceed critical values

    No full text

    Radiation exposure in the acute phase of aneurysmal subarachnoid hemorrhage

    No full text
    corecore