15 research outputs found

    CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    Get PDF
    Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode

    Single Particle Electron Microscopy Analysis of the Bovine Anion Exchanger 1 Reveals a Flexible Linker Connecting the Cytoplasmic and Membrane Domains

    Get PDF
    <div><p>Anion exchanger 1 (AE1) is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO<sub>2</sub> transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO). We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D) structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.</p> </div

    Single-particle reconstruction of bovine AE1.

    No full text
    <p>(<b>a</b>) Schematic illustration of the OTR data collection method. For each target sample area, two micrographs were recorded with the grid tilted at −45° and +45°, respectively. (<b>b</b>) 3D map generated by averaging 25 OTR maps. Two orthogonal views, defined as front view (left panel) and side view (right panel), are shown. (<b>c</b>) Final map obtained by merging 174,197 particle images with single particle reconstruction method. The map in (<b>c</b>) is shown in the same orientations as in (<b>b</b>). (<b>d</b>) Fourier shell correlation (FSC) coefficient between two reconstructions obtained from even- and odd-numbered particle images. The effective resolution is estimated to be 2.4 nm using the 0.5 FSC cut-off. (<b>e</b>) Comparisons of the computed projection, class average, and raw particle. Four representative views (top, tilt, front, and side) are show from left to right, respectively. (<b>f</b>) Euler angle distribution of classified particles. The brightness of each point indicates the number of particles used in the class average in that orientation.</p
    corecore