765 research outputs found

    Mechanism of thermal field and electric field in resistive random access memory using the high/low-k side wall structure

    Get PDF
    In the Internet of things (IoT) era, low power consumption memory will be a critical issue for further device development. Among many kinds of next-generation memories, resistive random access memory (RRAM) is considered as having the most potential due to its high performance. To prevent unrecoverable hard break-down of a RRAM device, the RRAM should be collocated with a transistor for external current compliance. With decreasing device cell size, however, the operating voltage of the transistor will become smaller and smaller. Previous study has determined that the forming voltage of RRAM increases when device cell size is reduced, which is a very crucial issue especially when the device is scaled down. We have proposed a high-k sidewall spacer structure in RRAM to solve the dilemma of increasing forming voltages for device cell scaling down. Based on the COMSOL-simulated electrical field distributions in the high-k RRAM. In addition, thermal conductivity of sidewall spacer influenced resistive switching behavior. Suitable thermal conductivity of sidewall materials can enhance resistive switching behavior. Please click Additional Files below to see the full abstract

    An Empirical Evaluation Of User Satisfaction With A School Nursing Information System

    Get PDF
    The adoption of a school nursing information system is considered one of the most efficient ways in which to document health records as well as monitor health conditions electronically. However, despite the importance of computerized health records in school nursing practice, few studies have examined user satisfaction of a school nursing information system. The aim of this study is to investigate the critical factors effecting school nurses’ satisfaction with a school nursing information system Utilizing a survey approach, questionnaires are distributed to nurses working in a primary or high school which introduces a new school nursing information system. The findings show several factors, including perceived usefulness, perceived of ease of use, training and workload are significant with user satisfaction. These results suggest that school nursing information system designers should comprehensively understand users’ demands and perceptions about the system, which will further facilitate user satisfaction, decrease their workload, and ultimately enhance job performance

    Reliability of flexible low temperature poly-silicon thin film transistor

    Get PDF
    This work reports the effect of mechanical stress-induced degradation in flexible low-temperature polycrystalline-silicon thin-film transistors. After 100,000 iterations of channel-width-direction mechanical compression at R=2mm, a significant shift of extracted threshold voltage and an abnormal hump at the subthreshold region were found. Simulation reveals that both the strongest mechanical stress and electrical field takes place at both sides of the channel edge, between the polycrystalline silicon and gate insulator. The gate insulator suffered from a serious mechanical stress and result in a defect generation in the gate insulator. The degradation of the threshold voltage shift and the abnormal hump can be ascribed to the electron trapping in these defects. In addition, this work introduced three methods to reduce the degradation cause by the mechanical stress, including the quality improvement of the gate insulator, organic trench structure and active layer with a wing structure. Please click Additional Files below to see the full abstract

    Understanding the performance of thin-client gaming

    Full text link
    Abstract—The thin-client model is considered a perfect fit for online gaming. As modern games normally require tremendous computing and rendering power at the game client, deploying games with such models can transfer the burden of hardware upgrades from players to game operators. As a result, there are a variety of solutions proposed for thin-client gaming today. However, little is known about the performance of such thin-client systems in different scenarios, and there is no systematic means yet to conduct such analysis. In this paper, we propose a methodology for quantifying the performance of thin-clients on gaming, even for thin-clients which are close-sourced. Taking a classic game, Ms. Pac-Man, and three popular thin-clients, LogMeIn, TeamViewer, and UltraVNC, as examples, we perform a demonstration study and determine that 1) display frame rate and frame distortion are both critical to gaming; and 2) different thin-client implementations may have very different levels of robustness against network impairments. Generally, LogMeIn performs best when network conditions are reasonably good, while TeamViewer and UltraVNC are the better choices under certain network conditions. I

    Measuring the latency of cloud gaming systems

    Full text link
    Cloud gaming, i.e., real-time game playing via thin clients, relieves players from the need to constantly upgrade their computers and deal with compatibility issues when playing games. As a result, cloud gaming is generating a great deal of interest among entrepreneurs and the public. However, given the large design space, it is not yet known which plat-forms deliver the best quality of service and which design elements constitute a good cloud gaming system. This study is motivated by the question: How good is the real-timeliness of current cloud gaming systems? To ad-dress the question, we analyze the response latency of two cloud gaming platforms, namely, OnLive and StreamMy-Game. Our results show that the streaming latency of On-Live is reasonable for real-time cloud gaming, while that of StreamMyGame is almost twice the former when the StreamMyGame server is provisioned using an Intel Core i7-920 PC. We believe that our measurement approach can be generally applied to PC-based cloud gaming platforms, and that it will further the understanding of such systems and lead to improvements
    • 

    corecore