13,232 research outputs found
Spikes for the gierer-meinhardt system with many segments of different diffusivities
We rigorously prove results on spiky patterns for the
Gierer-Meinhardt system with a large number of jump
discontinuities in the diffusion coefficient of the inhibitor. Using
numerical computations in combination with a Turing-type instability
analysis, this system has been investigated by Benson, Maini and
Sherratt
Optimal Haplotype Assembly from High-Throughput Mate-Pair Reads
Humans have pairs of homologous chromosomes. The homologous pairs are
almost identical pairs of chromosomes. For the most part, differences in
homologous chromosome occur at certain documented positions called single
nucleotide polymorphisms (SNPs). A haplotype of an individual is the pair of
sequences of SNPs on the two homologous chromosomes. In this paper, we study
the problem of inferring haplotypes of individuals from mate-pair reads of
their genome. We give a simple formula for the coverage needed for haplotype
assembly, under a generative model. The analysis here leverages connections of
this problem with decoding convolutional codes.Comment: 10 pages, 4 figures, Submitted to ISIT 201
Energy Relaxation of Hot Dirac Fermions in Graphene
We develop a theory for the energy relaxation of hot Dirac fermions in
graphene. We obtain a generic expression for the energy relaxation rate due to
electron-phonon interaction and calculate the power loss due to both optical
and acoustic phonon emission as a function of electron temperature
and density . We find an intrinsic power loss weakly
dependent on carrier density and non-vanishing at the Dirac point ,
originating from interband electron-optical phonon scattering by the intrinsic
electrons in the graphene valence band. We obtain the total power loss per
carrier within the range of electron
temperatures . We find optical (acoustic) phonon
emission to dominate the energy loss for in the density range .Comment: 5 page
Quantized Casimir Force
We investigate the Casimir effect between two-dimensional electron systems
driven to the quantum Hall regime by a strong perpendicular magnetic field. In
the large separation (d) limit where retardation effects are essential we find
i) that the Casimir force is quantized in units of 3\hbar c \alpha^2/(8\pi^2
d^4), and ii) that the force is repulsive for mirrors with same type of
carrier, and attractive for mirrors with opposite types of carrier. The sign of
the Casimir force is therefore electrically tunable in ambipolar materials like
graphene. The Casimir force is suppressed when one mirror is a charge-neutral
graphene system in a filling factor \nu=0 quantum Hall state.Comment: 4.2 page
Functional Genomics Profiling of Bladder Urothelial Carcinoma MicroRNAome as a Potential Biomarker.
Though bladder urothelial carcinoma is the most common form of bladder cancer, advances in its diagnosis and treatment have been modest in the past few decades. To evaluate miRNAs as putative disease markers for bladder urothelial carcinoma, this study develops a process to identify dysregulated miRNAs in cancer patients and potentially stratify patients based on the association of their microRNAome phenotype to genomic alterations. Using RNA sequencing data for 409 patients from the Cancer Genome Atlas, we examined miRNA differential expression between cancer and normal tissues and associated differentially expressed miRNAs with patient survival and clinical variables. We then correlated miRNA expressions with genomic alterations using the Wilcoxon test and REVEALER. We found a panel of six miRNAs dysregulated in bladder cancer and exhibited correlations to patient survival. We also performed differential expression analysis and clinical variable correlations to identify miRNAs associated with tobacco smoking, the most important risk factor for bladder cancer. Two miRNAs, miR-323a and miR-431, were differentially expressed in smoking patients compared to nonsmoking patients and were associated with primary tumor size. Functional studies of these miRNAs and the genomic features we identified for potential stratification may reveal underlying mechanisms of bladder cancer carcinogenesis and further diagnosis and treatment methods for urothelial bladder carcinoma
Intrinsic Spin Hall Effect in the presence of Extrinsic Spin-Orbit Scattering
Intrinsic and extrinsic spin Hall effects are considered together on an equal
theoretical footing for the Rashba spin-orbit coupling in two-dimensional (2D)
electron and hole systems, using the diagrammatic method for calculating the
spin Hall conductivity. Our analytic theory for the 2D holes shows the expected
lowest-order additive result for the spin Hall conductivity. But, the 2D
electrons manifest a very surprising result, exhibiting a non-analyticity in
the Rashba coupling strength where the strictly extrinsic spin Hall
conductivity (for ) cannot be recovered from the
limit of the combined theory. The theoretical results are discussed in the
context of existing experimental results.Comment: 5 pages, 2 figure
- …
