7 research outputs found

    The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients

    Get PDF
    Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection

    Prognostic relevance of gene-expression signatures

    Full text link
    Cancer prognosis can be regarded as estimating the risk of future outcomes from multiple variables. In prognostic signatures, these variables represent expressions of genes that are summed up to calculate a risk score. However, it is a natural phenomenon in living systems that the whole is more than the sum of its parts. We hypothesize that the prognostic power of signatures is fundamentally limited without incorporating emergent effects. Convergent evidence from a set of unprecedented size (ca. 10,000 signatures) implicates a maximum prognostic power. We show that a signature can correctly discriminate patients' prognoses in no more than 80% of the time. Using a simple simulation, we show that more than 50% of the potentially available information is still missing at this value.Comment: 27 pages, 6 figures, supporting informatio

    Integrating Heterogeneous Data for Improved Cancer Prognostics: A Clinically-Aligned, Physics-Informed Machine Learning Approach

    No full text
    Krebs ist eine durch unkontrolliertes und abnormales Zellwachstum gekennzeichnete Krankheit, die infolge von genetischen Mutationen entsteht, die reguläre zelluläre Aktivitäten beeinträchtigen und zur Bildung von Tumoren und Metastasen durch die sogenannte metastatische Kaskade führen können. Die Erforschung der genetischen Grundlage von Krebs und der Mechanismen der metastatischen Kaskade hat die Krebsforschung und -behandlung revolutioniert, was zur Intensivierung der Erforschung genetischer Daten in Krebsstudien führte. Trotz der genetischen Grundlage ist jedoch das Verständnis der Krebsprogression auf der makroskopischen Ebene entscheidend, wo die emergenten Eigenschaften über mehrere Skalen hinweg von Bedeutung sind. Diese Arbeit verbessert die Prognose von Brustkrebs, indem sie genetische und physische Informationen auf allen Skalen der metastatischen Kaskade integriert und maschinelles Lernen zur Datenintegration nutzt. Genexpressionsignaturen werden benutzt, anhand derer eine inhärente prognostische Grenze dargestellt wird, die bei einem Konkordanzindex von 0,8 liegt, was bedeutet, dass Prognosen für Patienten in höchstens 80% der Zeit korrekt unterschieden werden können. Darüber hinaus zeigt diese Arbeit, dass die ausschließliche Benutzung von Genexpressionsdaten für eine umfassende Prognose von Brustkrebs unzureichend ist. Diese Arbeit betont die Bedeutung traditioneller klinischer Variablen und führt zusätzliche Variablen ein, wie zum Beispiel das Konzept des 'Unjamming' und molekulare Variablen, die aus 14 immunhistochemischen Färbungen abgeleitet sind. Diese Variablen, zusammen mit räumlichen Strukturkorrelationen in 2D-histologischen Schnitten und Deskriptoren, die die extrazelluläre Matrix charakterisieren, tragen zu einer robusteren Prognose bei. In einer Analyse von 533 Probanden wurden in dieser Arbeit zwei unterschiedliche prognostische Signaturen entwickelt: eine physik-informierte Signatur und eine datengetriebene Signatur, deren Vorhersagekraft sich signifikant mit der sequenziellen Integration der oben genannten komplementären Faktoren erhöhte, wobei die Konkordanzindizes von 0,56 auf 0,67 bzw. von 0,54 auf 0,79 stiegen. Die Integration dieser Faktoren bringt die prognostischen Signaturen näher an die geschätzte Konkordanzindex-Grenze von 0,8 und zeigt die Entwicklungsmöglichkeiten einer robusten und leistungsstarken prognostischen Signatur

    Integrating Heterogeneous Data for Improved Cancer Prognostics: A Clinically-Aligned, Physics-Informed Machine Learning Approach

    Get PDF
    Krebs ist eine durch unkontrolliertes und abnormales Zellwachstum gekennzeichnete Krankheit, die infolge von genetischen Mutationen entsteht, die reguläre zelluläre Aktivitäten beeinträchtigen und zur Bildung von Tumoren und Metastasen durch die sogenannte metastatische Kaskade führen können. Die Erforschung der genetischen Grundlage von Krebs und der Mechanismen der metastatischen Kaskade hat die Krebsforschung und -behandlung revolutioniert, was zur Intensivierung der Erforschung genetischer Daten in Krebsstudien führte. Trotz der genetischen Grundlage ist jedoch das Verständnis der Krebsprogression auf der makroskopischen Ebene entscheidend, wo die emergenten Eigenschaften über mehrere Skalen hinweg von Bedeutung sind. Diese Arbeit verbessert die Prognose von Brustkrebs, indem sie genetische und physische Informationen auf allen Skalen der metastatischen Kaskade integriert und maschinelles Lernen zur Datenintegration nutzt. Genexpressionsignaturen werden benutzt, anhand derer eine inhärente prognostische Grenze dargestellt wird, die bei einem Konkordanzindex von 0,8 liegt, was bedeutet, dass Prognosen für Patienten in höchstens 80% der Zeit korrekt unterschieden werden können. Darüber hinaus zeigt diese Arbeit, dass die ausschließliche Benutzung von Genexpressionsdaten für eine umfassende Prognose von Brustkrebs unzureichend ist. Diese Arbeit betont die Bedeutung traditioneller klinischer Variablen und führt zusätzliche Variablen ein, wie zum Beispiel das Konzept des 'Unjamming' und molekulare Variablen, die aus 14 immunhistochemischen Färbungen abgeleitet sind. Diese Variablen, zusammen mit räumlichen Strukturkorrelationen in 2D-histologischen Schnitten und Deskriptoren, die die extrazelluläre Matrix charakterisieren, tragen zu einer robusteren Prognose bei. In einer Analyse von 533 Probanden wurden in dieser Arbeit zwei unterschiedliche prognostische Signaturen entwickelt: eine physik-informierte Signatur und eine datengetriebene Signatur, deren Vorhersagekraft sich signifikant mit der sequenziellen Integration der oben genannten komplementären Faktoren erhöhte, wobei die Konkordanzindizes von 0,56 auf 0,67 bzw. von 0,54 auf 0,79 stiegen. Die Integration dieser Faktoren bringt die prognostischen Signaturen näher an die geschätzte Konkordanzindex-Grenze von 0,8 und zeigt die Entwicklungsmöglichkeiten einer robusten und leistungsstarken prognostischen Signatur

    The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients

    No full text
    Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection

    The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients

    No full text
    Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection

    The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients

    No full text
    Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection
    corecore