7 research outputs found
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients
Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection
Prognostic relevance of gene-expression signatures
Cancer prognosis can be regarded as estimating the risk of future outcomes
from multiple variables. In prognostic signatures, these variables represent
expressions of genes that are summed up to calculate a risk score. However, it
is a natural phenomenon in living systems that the whole is more than the sum
of its parts. We hypothesize that the prognostic power of signatures is
fundamentally limited without incorporating emergent effects. Convergent
evidence from a set of unprecedented size (ca. 10,000 signatures) implicates a
maximum prognostic power. We show that a signature can correctly discriminate
patients' prognoses in no more than 80% of the time. Using a simple simulation,
we show that more than 50% of the potentially available information is still
missing at this value.Comment: 27 pages, 6 figures, supporting informatio
Integrating Heterogeneous Data for Improved Cancer Prognostics: A Clinically-Aligned, Physics-Informed Machine Learning Approach
Krebs ist eine durch unkontrolliertes und abnormales Zellwachstum gekennzeichnete
Krankheit, die infolge von genetischen Mutationen entsteht, die reguläre
zelluläre Aktivitäten beeinträchtigen und zur Bildung von Tumoren und Metastasen
durch die sogenannte metastatische Kaskade führen können. Die Erforschung
der genetischen Grundlage von Krebs und der Mechanismen der metastatischen
Kaskade hat die Krebsforschung und -behandlung revolutioniert, was zur Intensivierung
der Erforschung genetischer Daten in Krebsstudien fĂĽhrte. Trotz der
genetischen Grundlage ist jedoch das Verständnis der Krebsprogression auf der
makroskopischen Ebene entscheidend, wo die emergenten Eigenschaften ĂĽber
mehrere Skalen hinweg von Bedeutung sind.
Diese Arbeit verbessert die Prognose von Brustkrebs, indem sie genetische und
physische Informationen auf allen Skalen der metastatischen Kaskade integriert und
maschinelles Lernen zur Datenintegration nutzt. Genexpressionsignaturen werden
benutzt, anhand derer eine inhärente prognostische Grenze dargestellt wird, die bei
einem Konkordanzindex von 0,8 liegt, was bedeutet, dass Prognosen fĂĽr Patienten
in höchstens 80% der Zeit korrekt unterschieden werden können.
DarĂĽber hinaus zeigt diese Arbeit, dass die ausschlieĂźliche Benutzung von
Genexpressionsdaten fĂĽr eine umfassende Prognose von Brustkrebs unzureichend
ist. Diese Arbeit betont die Bedeutung traditioneller klinischer Variablen und
führt zusätzliche Variablen ein, wie zum Beispiel das Konzept des 'Unjamming'
und molekulare Variablen, die aus 14 immunhistochemischen Färbungen
abgeleitet sind. Diese Variablen, zusammen mit räumlichen Strukturkorrelationen
in 2D-histologischen Schnitten und Deskriptoren, die die extrazelluläre Matrix
charakterisieren, tragen zu einer robusteren Prognose bei.
In einer Analyse von 533 Probanden wurden in dieser Arbeit zwei unterschiedliche
prognostische Signaturen entwickelt: eine physik-informierte Signatur
und eine datengetriebene Signatur, deren Vorhersagekraft sich signifikant mit
der sequenziellen Integration der oben genannten komplementären Faktoren
erhöhte, wobei die Konkordanzindizes von 0,56 auf 0,67 bzw. von 0,54 auf
0,79 stiegen. Die Integration dieser Faktoren bringt die prognostischen Signaturen
näher an die geschätzte Konkordanzindex-Grenze von 0,8 und zeigt die
Entwicklungsmöglichkeiten einer robusten und leistungsstarken prognostischen
Signatur
Integrating Heterogeneous Data for Improved Cancer Prognostics: A Clinically-Aligned, Physics-Informed Machine Learning Approach
Krebs ist eine durch unkontrolliertes und abnormales Zellwachstum gekennzeichnete
Krankheit, die infolge von genetischen Mutationen entsteht, die reguläre
zelluläre Aktivitäten beeinträchtigen und zur Bildung von Tumoren und Metastasen
durch die sogenannte metastatische Kaskade führen können. Die Erforschung
der genetischen Grundlage von Krebs und der Mechanismen der metastatischen
Kaskade hat die Krebsforschung und -behandlung revolutioniert, was zur Intensivierung
der Erforschung genetischer Daten in Krebsstudien fĂĽhrte. Trotz der
genetischen Grundlage ist jedoch das Verständnis der Krebsprogression auf der
makroskopischen Ebene entscheidend, wo die emergenten Eigenschaften ĂĽber
mehrere Skalen hinweg von Bedeutung sind.
Diese Arbeit verbessert die Prognose von Brustkrebs, indem sie genetische und
physische Informationen auf allen Skalen der metastatischen Kaskade integriert und
maschinelles Lernen zur Datenintegration nutzt. Genexpressionsignaturen werden
benutzt, anhand derer eine inhärente prognostische Grenze dargestellt wird, die bei
einem Konkordanzindex von 0,8 liegt, was bedeutet, dass Prognosen fĂĽr Patienten
in höchstens 80% der Zeit korrekt unterschieden werden können.
DarĂĽber hinaus zeigt diese Arbeit, dass die ausschlieĂźliche Benutzung von
Genexpressionsdaten fĂĽr eine umfassende Prognose von Brustkrebs unzureichend
ist. Diese Arbeit betont die Bedeutung traditioneller klinischer Variablen und
führt zusätzliche Variablen ein, wie zum Beispiel das Konzept des 'Unjamming'
und molekulare Variablen, die aus 14 immunhistochemischen Färbungen
abgeleitet sind. Diese Variablen, zusammen mit räumlichen Strukturkorrelationen
in 2D-histologischen Schnitten und Deskriptoren, die die extrazelluläre Matrix
charakterisieren, tragen zu einer robusteren Prognose bei.
In einer Analyse von 533 Probanden wurden in dieser Arbeit zwei unterschiedliche
prognostische Signaturen entwickelt: eine physik-informierte Signatur
und eine datengetriebene Signatur, deren Vorhersagekraft sich signifikant mit
der sequenziellen Integration der oben genannten komplementären Faktoren
erhöhte, wobei die Konkordanzindizes von 0,56 auf 0,67 bzw. von 0,54 auf
0,79 stiegen. Die Integration dieser Faktoren bringt die prognostischen Signaturen
näher an die geschätzte Konkordanzindex-Grenze von 0,8 und zeigt die
Entwicklungsmöglichkeiten einer robusten und leistungsstarken prognostischen
Signatur
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients
Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients
Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection
The Mechanical Fingerprint of Circulating Tumor Cells (CTCs) in Breast Cancer Patients
Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection