79 research outputs found

    The Cilialyzer - A freely available open-source software for the analysis of mucociliary activity in respiratory cells.

    Get PDF
    BACKGROUND AND OBJECTIVE Primary ciliary dyskinesia (PCD) is a rare genetic disorder causing a defective ciliary structure, which predominantly leads to an impaired mucociliary clearance and associated airway disease. As there is currently no single diagnostic gold standard test, PCD is diagnosed by a combination of several methods comprising genetic testing and the examination of the ciliary structure and function. Among the approved diagnostic methods, only high-speed video microscopy (HSVM) allows to directly observe the ciliary motion and therefore, to directly assess ciliary function. In the present work, we present our recently developed freely available open-source software - termed "Cilialyzer", which has been specifically designed to support and facilitate the analysis of the mucociliary activity in respiratory epithelial cells captured by high-speed video microscopy. METHODS In its current state, the Cilialyzer software enables clinical PCD analysts to load, preprocess and replay recorded image sequences as well as videos with a feature-rich replaying module facilitating the commonly performed qualitative visual assessment of ciliary function (including the assessment of the ciliary beat pattern). The image processing methods made accessible through an intuitive user interface allow clinical specialists to comfortably compute the ciliary beating frequency (CBF), the activity map and the "frequency correlation length" - an observable getting newly introduced. Furthermore, the Cilialyzer contains a simple-to-use particle tracking interface to determine the mucociliary transport speed. RESULTS Cilialyzer is fully written in the Python programming language and freely available under the terms of the MIT license. The proper functioning of the computational analysis methods constituting the Cilialyzer software is demonstrated by using simulated and representative sample data from clinical practice. Additionally, the software was used to analyze high-speed videos showing samples obtained from healthy controls and genetically confirmed PCD cases (DNAI1 and DNAH11 mutations) to show its clinical applicability. CONCLUSIONS Cilialyzer serves as a useful clinical tool for PCD analysts and provides new quantitative information awaiting to be clinically evaluated using cohorts of PCD. As Cilialyzer is freely available under the terms of a permissive open-source license, it serves as a ground frame for further development of computational methods aiming at the quantification and automation of the analysis of mucociliary activity captured by HSVM

    Valve disease in chronic venous disorders: a quantitative ultrastructural analysis by transmission electron microscopy and stereology

    Get PDF
    INTRODUCTION: The ultrastructure of venous valves and walls in chronic venous disease was investigated. METHODS: Consecutive patients were categorised into one of three groups (group A: patients with C1 venous disease in accordance with CEAP (Clinical severity, Etiology, Anatomy, Pathophysiology); group B: C2 and C3; group C: C4, C5 and C6). The terminal or preterminal valve and adjacent vessel wall was harvested from the great saphenous vein. Sections were examined with a transmission electron microscope. The volumes of elastin and of collagen per unit surface area of valve were assessed, as well as the surface endothelium of valve and vessel wall. RESULTS: The study population consisted of 17 patients. The elastin ratio was analysed by means of stereology. Mean values were: in group A, 0.45 μm3/m2; in group B, 0.67 μm3/m2; in group C, 0.97 μm3/m2. The ratio was similar for collagen (A, 15.7 μm3/m2; B, 26.8 μm3/m2; C, 30.1 μm3/m2). Surface analysis of the valve endothelium and the adjacent vessel wall endothelium showed a trend towards increasing damage with more severe disease. CONCLUSIONS: With progression of venous disease, the valve elastin content, assessed morphologically, seems to increase, and the endothelium of the venous valve and the vein wall tend to show more damage

    Effect of Lateral Sliding Calcaneus Osteotomy on Tarsal Tunnel Pressure

    Get PDF
    Background: Lateral sliding calcaneus osteotomies are common procedures to correct hindfoot varus deformities. Shifting the calcaneal tuberosity laterally (lateralization) can lead to tarsal tunnel pressure increase and tibial nerve palsy. The purpose of this cadaveric biomechanical study was to investigate the correlation of lateralization and pressure increase underneath the flexor retinaculum. Methods: The pressure in the tarsal tunnel of 12 Thiel-fixated human cadaveric lower legs was measured in different foot positions and varying degrees of calcaneal lateralization. Results: The mean pressure increased from plantarflexion (PF) to neutral position (NP) and from NP to hindfoot dorsiflexion (DF), and with increasing amounts of lateralization of the calcaneal tuberosity. The mean baseline pressure in PF was 1.5, in NP 2.2, and in DF 6.5 mmHg and increased to 8.1 in PF, 18.4 in NP, and 33.1 mmHg with 12 mm of lateralization. The release of the flexor retinaculum significantly lowered the pressure. Conclusion: Increasing pressures were found in the tarsal tunnel with increasing lateralization of the tuberosity and with both dorsiflexion and plantarflexion of the ankle. Clinical Relevance: A pre-emptive release of the flexor retinaculum for a lateralization of the calcaneal tuberosity of more than 8 mm should be considered, especially if specific patient risk factors are present. No tibial nerve palsy should be expected with 4 mm of lateralization

    Impact of cerebral hypoperfusion-reperfusion on optic nerve integrity and visual function in the DBA/2J mouse model of glaucoma.

    Get PDF
    OBJECTIVE One of the most important risk factors for developing a glaucomatous optic neuropathy is elevated intraocular pressure. Moreover, mechanisms such as altered perfusion have been postulated to injure the optical path. In a mouse model, we compare first negative effects of cerebral perfusion/reperfusion on the optic nerve structure versus alterations by elevated intraocular pressure. Second, we compare the alterations by isolated hypoperfusion-reperfusion and isolated intraocular pressure to the combination of both. METHODS AND ANALYSIS Mice were divided in four groups: (1) controls; (2) perfusion altered mice that underwent transient bi-common carotid artery occlusion (BCCAO) for 40 min; (3) glaucoma group (DBA/2J mice); (4) combined glaucoma and altered perfusion (DBA/2J mice with transient BCCAO). Optic nerve sections were stereologically examined 10-12 weeks after intervention. RESULTS All experimental groups showed a decreased total axon number per optic nerve compared with controls. In DBA/2J and combined DBA/2J & BCCAO mice the significant decrease was roughly 50%, while BCCAO leaded to a 23% reduction of axon number, however reaching significance only in the direct t-test. The difference in axon number between BCCAO and both DBA/2J mice was almost 30%, lacking statistical significance due to a remarkably high variation in both DBA/2J groups. CONCLUSION Elevated intraocular pressure in the DBA/2J mouse model of glaucoma leads to a much more pronounced optic nerve atrophy compared with transient forebrain hypoperfusion and reperfusion by BCCAO. A supposed worsening effect of an altered perfusion added to the pressure-related damage could not be detected

    Diagnosis of primary ciliary dyskinesia: discrepancy according to different algorithms

    Full text link
    Background: Diagnosis of primary ciliary dyskinesia (PCD) is challenging since there is no gold standard test. The European Respiratory (ERS) and American Thoracic (ATS) Societies developed evidence-based diagnostic guidelines with considerable differences. Objective: We aimed to compare the algorithms published by the ERS and the ATS with each other and with our own PCD-UNIBE algorithm in a clinical setting. Our algorithm is similar to the ERS algorithm with additional immunofluorescence staining. Agreement (Cohen's κ) and concordance between the three algorithms were assessed in patients with suspicion of PCD referred to our diagnostic centre. Results: In 46 out of 54 patients (85%) the final diagnosis was concordant between all three algorithms (30 PCD negative, 16 PCD positive). In eight patients (15%) PCD diagnosis differed between the algorithms. Five patients (9%) were diagnosed as PCD only by the ATS, one (2%) only by the ERS and PCD-UNIBE, one (2%) only by the ATS and PCD-UNIBE, and one (2%) only by the PCD-UNIBE algorithm. Agreement was substantial between the ERS and the ATS (κ=0.72, 95% CI 0.53-0.92) and the ATS and the PCD-UNIBE (κ=0.73, 95% CI 0.53-0.92) and almost perfect between the ERS and the PCD-UNIBE algorithms (κ=0.92, 95% CI 0.80-1.00). Conclusion: The different diagnostic algorithms lead to a contradictory diagnosis in a considerable proportion of patients. Thus, an updated, internationally harmonised and standardised PCD diagnostic algorithm is needed to improve diagnostics for these discordant cases

    A Comprehensive Approach for the Diagnosis of Primary Ciliary Dyskinesia-Experiences from the First 100 Patients of the PCD-UNIBE Diagnostic Center

    Full text link
    Primary ciliary dyskinesia (PCD) is a rare genetic disease characterized by dyskinetic cilia. Respiratory symptoms usually start at birth. The lack of diagnostic gold standard tests is challenging, as PCD diagnostics requires different methods with high expertise. We founded PCD-UNIBE as the first comprehensive PCD diagnostic center in Switzerland. Our diagnostic approach includes nasal brushing and cell culture with analysis of ciliary motility via high-speed-videomicroscopy (HSVM) and immunofluorescence labeling (IF) of structural proteins. Selected patients undergo electron microscopy (TEM) of ciliary ultrastructure and genetics. We report here on the first 100 patients assessed by PCD-UNIBE. All patients received HSVM fresh, IF, and cell culture (success rate of 90%). We repeated the HSVM with cell cultures and conducted TEM in 30 patients and genetics in 31 patients. Results from cell cultures were much clearer compared to fresh samples. For 80 patients, we found no evidence of PCD, 17 were diagnosed with PCD, two remained inconclusive, and one case is ongoing. HSVM was diagnostic in 12, IF in 14, TEM in five and genetics in 11 cases. None of the methods was able to diagnose all 17 PCD cases, highlighting that a comprehensive approach is essential for an accurate diagnosis of PCD

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development
    • …
    corecore