542 research outputs found

    Cuts by Caspase-14 Control the Proteolysis of Filaggrin

    Get PDF
    Although mutations in the filaggrin gene (FLG) have been shown to be associated with ichthyosis vulgaris and atopic dermatitis, the function and regulation of filaggrin remain incompletely understood. In this issue, Hoste et al. report that filaggrin is directly cleaved by caspase-14. Acting in concert with other proteases, caspase-14 controls the breakdown of filaggrin to free amino acids and amino acid derivatives that contribute to the hydration and UVB absorption capacity of the stratum corneum. These findings identify a new layer of complexity in the regulation of epidermal barrier function

    Evolutionary origin and diversification of epidermal barrier proteins in amniotes.

    Get PDF
    The evolution of amniotes has involved major molecular innovations in the epidermis. In particular, distinct structural proteins that undergo covalent cross-linking during cornification of keratinocytes facilitate the formation of mechanically resilient superficial cell layers and help to limit water loss to the environment. Special modes of cornification generate amniote-specific skin appendages such as claws, feathers, and hair. In mammals, many protein substrates of cornification are encoded by a cluster of genes, termed the epidermal differentiation complex (EDC). To provide a basis for hypotheses about the evolution of cornification proteins, we screened for homologs of the EDC in non-mammalian vertebrates. By comparative genomics, de novo gene prediction and gene expression analyses, we show that, in contrast to fish and amphibians, the chicken and the green anole lizard have EDC homologs comprising genes that are specifically expressed in the epidermis and in skin appendages. Our data suggest that an important component of the cornified protein envelope of mammalian keratinocytes, that is, loricrin, has originated in a common ancestor of modern amniotes, perhaps during the acquisition of a fully terrestrial lifestyle. Moreover, we provide evidence that the sauropsid-specific beta-keratins have evolved as a subclass of EDC genes. Based on the comprehensive characterization of the arrangement, exon-intron structures and conserved sequence elements of EDC genes, we propose new scenarios for the evolutionary origin of epidermal barrier proteins via fusion of neighboring S100A and peptidoglycan recognition protein genes, subsequent loss of exons and highly divergent sequence evolution

    Convergent evolution of cysteine-rich proteins in feathers and hair

    Get PDF
    Background Feathers and hair consist of cornified epidermal keratinocytes in which proteins are crosslinked via disulfide bonds between cysteine residues of structural proteins to establish mechanical resilience. Cysteine-rich keratin-associated proteins (KRTAPs) are important components of hair whereas the molecular components of feathers have remained incompletely known. Recently, we have identified a chicken gene, named epidermal differentiation cysteine-rich protein (EDCRP), that encodes a protein with a cysteine content of 36%. Here we have investigated the putative role of EDCRP in the molecular architecture and evolution of feathers. Results Comparative genomics showed that the presence of an EDCRP gene and the high cysteine content of the encoded proteins are conserved among birds. Avian EDCRPs contain a species-specific number of sequence repeats with the consensus sequence CCDPCQ(K/Q)(S/P)V, thus resembling mammalian cysteine-rich KRTAPs which also contain sequence repeats of similar sequence. However, differences in gene loci and exon-intron structures suggest that EDCRP and KRTAPs have not evolved from a common gene ancestor but represent the products of convergent sequence evolution. mRNA in situ hybridization demonstrated that chicken EDCRP is expressed in the subperiderm layer of the embryonic epidermis and in the barbule cells of growing feathers. This expression pattern supports the hypothesis that feathers are evolutionarily derived from the subperiderm. Conclusions The results of this study suggest that convergent sequence evolution of avian EDCRP and mammalian KRTAPs has contributed to independent evolution of feathers and hair, respectively.(VLID)486031

    DNase1L2 Degrades Nuclear DNA during Corneocyte Formation

    Get PDF
    The removal of keratinocyte (KC) nuclear DNA by deoxyribonucleases (DNases) is an important step in the formation of normal stratum corneum (SC). However, the molecular identity of the DNA-degrading enzymes has so far remained elusive. Here we show that the endonuclease DNase1-like 2 (DNase1L2) is preferentially expressed in the epidermis and that its expression correlates with terminal differentiation of KC in vitro and in vivo. In biopsies of normal skin, DNase1L2 mRNA was regularly found in suprabasal KC and DNase1L2 protein was highly abundant in the stratum granulosum. In contrast to normal skin, DNase1L2 expression was downregulated in parakeratotic epidermis such as in psoriatic lesions. When DNase1L2 gene expression was knocked down by small interfering RNA in a human skin equivalent model, nuclei were maintained through all layers of the SC. Taken together, our data demonstrate that DNase1L2 plays an essential role in DNA degradation during terminal differentiation of epidermal KC

    DNase 2 Is the Main DNA-Degrading Enzyme of the Stratum Corneum

    Get PDF
    The cornified layer, the stratum corneum, of the epidermis is an efficient barrier to the passage of genetic material, i.e. nucleic acids. It contains enzymes that degrade RNA and DNA which originate from either the living part of the epidermis or from infectious agents of the environment. However, the molecular identities of these nucleases are only incompletely known at present. Here we performed biochemical and genetic experiments to determine the main DNase activity of the stratum corneum. DNA degradation assays and zymographic analyses identified the acid endonucleases L-DNase II, which is derived from serpinB1, and DNase 2 as candidate DNases of the cornified layer of the epidermis. siRNA-mediated knockdown of serpinB1 in human in vitro skin models and the investigation of mice deficient in serpinB1a demonstrated that serpinB1-derived L-DNase II is dispensable for epidermal DNase activity. By contrast, knockdown of DNase 2, also known as DNase 2a, reduced DNase activity in human in vitro skin models. Moreover, the genetic ablation of DNase 2a in the mouse was associated with the lack of acid DNase activity in the stratum corneum in vivo. The degradation of endogenous DNA in the course of cornification of keratinocytes was not impaired by the absence of DNase 2. Taken together, these data identify DNase 2 as the predominant DNase on the mammalian skin surface and indicate that its activity is primarily targeted to exogenous DNA

    Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease

    Get PDF
    Activator protein 1 (AP-1) (Fos/Jun) is a transcriptional regulator composed of members of the Fos and Jun families of DNA binding proteins. The functions of AP-1 were initially studied in mouse development as well as in the whole organism through conventional transgenic approaches, but also by gene targeting using knockout strategies. The importance of AP-1 proteins in disease pathways including the inflammatory response became fully apparent through conditional mutagenesis in mice, in particular when employing gene inactivation in a tissue-specific and inducible fashion. Besides the well-documented roles of Fos and Jun proteins in oncogenesis, where these genes can function both as tumor promoters or tumor suppressors, AP-1 proteins are being recognized as regulators of bone and immune cells, a research area termed osteoimmunology. In the present article, we review recent data regarding the functions of AP-1 as a regulator of cytokine expression and an important modulator in inflammatory diseases such as rheumatoid arthritis, psoriasis and psoriatic arthritis. These new data provide a better molecular understanding of disease pathways and should pave the road for the discovery of new targets for therapeutic applications

    Epidermal Langerhans Cells-A Target for HTLV-III/LAV Infection

    Get PDF
    Langerhans cells (LC) are bone marrow-derived, la+, CD1+, CD4+, ATPase+ dendritic antigen-presenting cells within the human epidermis. Since the CD4 molecule has been implicated as a receptor structure for HTLV-III/LAV (human T-cell leukemia virus/lymphadenopathy-associated virus), we asked whether LC from HTLV-III/LAV-seropositive individuals display signs of HTLV-III/LAV infection. In skin biopsies from 7/40 HTLV-III/LAV-infected persons (1 asymptomatic carrier, 2 patients with acquired immunodeficiency syndrome (AIDS)-related complex and 4 patients with AIDS), LC were the only epidermal cells to react with a monoclonal antibody specific for the HTLV-III core protein p17. A varying percentage of p17+ LC were morphologically altered with blunt dendrites and poorly demarcated cellular contours. In one of these biopsies, the presence of LC-associated viral particles characteristic of HTLV-III/LAV as well as cytopathic changes in approximately one-third of the LC population were demonstrated by electron microscopy. These results strongly suggest that LC may harbor HTLV-III/LAV. The infection of LC with this retrovirus may have deleterious consequences for the immunologic functions of this cell system and may thus contribute to both the acquisition of immunodeficiency and the infectious and neoplastic complications of AIDS
    • …
    corecore