28 research outputs found

    Allan-herndon-dudley-syndrome: Considerations about the brain phenotype with implications for treatment strategies.

    No full text
    Despite its first description more than 75 years ago, effective treatment for "Allan-Herndon-Dudley-Syndrome (AHDS)", an X-linked thyroid hormone transporter defect, is unavailable. Mutations in the SLC16A2 gene have been discovered to be causative for AHDS in 2004, but a comprehensive understanding of the function of the encoded protein, monocarboxylate transporter 8 (MCT8), is incomplete. Patients with AHDS suffer from neurodevelopmental delay, as well as extrapyramidal ( dystonia, chorea, athetosis), pyramidal (spasticity), and cerebellar symptoms (ataxia). This suggests an affection of the pyramidal tracts, basal ganglia, and cerebellum, most likely already during fetal brain development. The function of other brain areas relevant for mood, behavior, and vigilance seems to be intact. An optimal treatment strategy should thus aim to deliver T3 to these relevant structures at the correct time points during development. A potential therapeutic strategy meeting these needs might be the delivery of T3 via a "Trojan horse mechanism" by which T3 is delivered into target cells by a thyroid hormone transporter independent T3 internalization

    Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates.

    Get PDF
    The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the ghrelin/GHS-R system

    Short-term cold exposure supports human Treg induction <em>in vivo</em>.

    No full text
    Objective: Obesity and type-2 diabetes (T2D) are metabolic diseases that represent a critical health problem worldwide. Metabolic disease is differentially associated with fat distribution, while visceral white adipose tissue (VAT) is particularly prone to obesity-associated inflammation. Next to their canonical function of immune suppression, regulatory T cells (Tregs) are key in controlling adipose tissue homeostasis. Towards understanding the molecular underpinnings of metabolic disease, we focus on how environmental-metabolic stimuli impinge on the functional interplay between Tregs and adipose tissue. Here, cold exposure or beta3-adrenergic signaling are a promising tool to increase energy expenditure by activating brown adipose tissue, as well as by reducing local inflammation within fat depots by supporting immunosuppressive Tregs. However, in humans, the underlying mechanisms that enable the environmental-immune crosstalk in the periphery and in the respective tissue remain currently unknown.Methods: We used combinatorial approaches of next generation humanized mouse models and in vitro and in vivo experiments together with beta3-adrenergic stimulation to dissect the underlying mechanisms of human Treg induction exposed to environmental stimuli such as cold. To test the translational relevance of our findings, we analyzed samples from the FREECE study in which human subjects were exposed to individualized cooling protocols. Samples were analyzed ex vivo and after in vitro Treg induction using qRT-PCR, immunofluorescence, as well as with multicolor flow cytometry and cell sorting.Results: In vivo application of the beta3-adrenergic receptor agonist mirabegron in humanized mice induced thermogenesis and improved the Treg induction capacity of naive T cells isolated from these animals. Using samples from the human FREECE study, we demonstrate that a short-term cold stimulus supports human Treg induction in vitro and in vivo. Mechanistically, we identify BORCS6 encoding the Ragulator-interacting protein C17orf59 to be significantly induced in human CD4(+) T cells upon short-term cold exposure. Strong mTOR signaling is known to limit successful Treg induction and thus likely by interfering with mTOR activation at lysosomal surfaces, C17orf59 improves the Treg induction capacity of human naive T cells upon cold exposure.Conclusions: These novel insights into the molecular underpinnings of human Treg induction suggest an important role of Tregs in linking environmental stimuli with adipose tissue function and metabolic diseases. Moreover, these discoveries shed new light on potential approaches towards tailored anti-inflammatory concepts that support human adipose tissue homeostasis by enabling Tregs

    Mit Big Data zur personalisierten Diabetesprävention.

    No full text
    Seit 1980 vervierfachte sich die Zahl der Menschen mit Diabetes weltweit. Allein in Deutschland leiden knapp 7 Mio. Menschen an dieser Stoffwechselerkrankung, und jedes Jahr erkranken bis zu 500.000 neu daran. Diese Zahlen machen deutlich, wie dringend neue wirksame Präventionsmaßnahmen und innovative Behandlungsformen benötigt werden. Die Digitalisierung ermöglicht es, die Volkskrankheit Diabetes in einer neuen Dimension zu erforschen, um sehr früh Subtypen dieser Stoffwechselerkrankung zu erkennen und geeignete personalisierte Präventionsmaßnahmen anzubieten. Mit dem Aufbau eines digitalen Diabetespräventionszentrums könnten Gesundheits- und Forschungsdaten aus unterschiedlichsten Quellen zusammengeführt und mit innovativen Informationstechnologien (IT: Informationstechnik) analysiert und ausgewertet werden, um unterschiedliche Diabetessubtypen identifizieren und spezifische Präventions- und Therapiemaßnahmen anbieten zu können, die durch die enge Zusammenarbeit mit der Bevölkerung direkt einsetzbar wären

    A novel missense mutation in the mouse growth hormone gene causes semidominant dwarfism, hyperghrelinemia and obesity.

    No full text
    The SMA1-mouse is a novel ethyl-nitroso-urea (ENU)-induced mouse mutant that carries an a--&gt;g missense mutation in exon 5 of the GH gene, which translates to a D167G amino acid exchange in the mature protein. Mice carrying the mutation are characterized by dwarfism, predominantly due to the reduction (sma1/+) or absence (sma1/sma1) of the GH-mediated peripubertal growth spurt, with sma1/+ mice displaying a less pronounced phenotype. All genotypes are viable and fertile, and the mode of inheritance is in accordance with a semidominant Mendelian trait. Adult SMA1 mice accumulate excessive amounts of sc and visceral fat in the presence of elevated plasma ghrelin levels, possibly reflecting altered energy partitioning. Our results suggest impaired storage and/or secretion of pituitary GH in mutants, resulting in reduced pituitary GH and reduced GH-stimulated IGF-1 expression. Generation and identification of the SMA1 mouse exemplifies the power of the combination of random mouse mutagenesis with a highly detailed phenotype-analysis as a successful strategy for the detection and analysis of novel gene-function relationships

    Author Correction: Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice (Nature Communications, (2020), 11, 1, (624), 10.1038/s41467-019-14069-2).

    No full text
    The original version of the Peer Review File associated with this Article was updated after publication to redact two figures in the interest of confidentiality

    Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice.

    No full text
    Brown adipose thermogenesis increases energy expenditure and relies on uncoupling protein 1 (UCP1), however, UCP1 knock-out mice show resistance to diet-induced obesity at room temperature. Here, the authors show that this resistance relies on FGF21-signaling, inducing the browning of white adipose tissue.Uncoupling protein 1 (UCP1) executes thermogenesis in brown adipose tissue, which is a major focus of human obesity research. Although the UCP1-knockout (UCP1 KO) mouse represents the most frequently applied animal model to judge the anti-obesity effects of UCP1, the assessment is confounded by unknown anti-obesity factors causing paradoxical obesity resistance below thermoneutral temperatures. Here we identify the enigmatic factor as endogenous FGF21, which is primarily mediating obesity resistance. The generation of UCP1/FGF21 double-knockout mice (dKO) fully reverses obesity resistance. Within mild differences in energy metabolism, urine metabolomics uncover increased secretion of acyl-carnitines in UCP1 KOs, suggesting metabolic reprogramming. Strikingly, transcriptomics of metabolically important organs reveal enhanced lipid and oxidative metabolism in specifically white adipose tissue that is fully reversed in dKO mice. Collectively, this study characterizes the effects of endogenous FGF21 that acts as master regulator to protect from diet-induced obesity in the absence of UCP1

    Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice.

    Get PDF
    Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications

    Dusp8 affects hippocampal size and behavior in mice and humans.

    No full text
    Dual-specificity phosphatase 8 (Dusp8) acts as physiological inhibitor for the MAPKs Jnk, Erk and p38 which are involved in regulating multiple CNS processes. While Dusp8 expression levels are high in limbic areas such as the hippocampus, the functional role of Dusp8 in hippocampus morphology, MAPK-signaling, neurogenesis and apoptosis as well as in behavior are still unclear. It is of particular interest whether human carriers of a DUSP8 allelic variant show similar hippocampal alterations to mice. Addressing these questions using Dusp8WT and KO mouse littermates, we found that KOs suffered from mildly impaired spatial learning, increased locomotor activity and elevated anxiety. Cell proliferation, apoptosis and p38 and Jnk phosphorylation were unaffected, but phospho-Erk levels were higher in hippocampi of the KOs. Consistent with a decreased hippocampus size in Dusp8 KO mice, we found reduced volumes of the hippocampal subregions subiculum and CA4 in humans carrying the DUSP8 allelic variant SNP rs2334499:C &gt; T. Overall, aberrations in morphology and behavior in Dusp8 KO mice and a decrease in hippocampal volume of SNP rs2334499:C &gt; T carriers point to a novel, translationally relevant role of Dusp8 in hippocampus function that warrants further studies on the role of Dusp8 within the limbic network

    Identification of proliferative and mature &beta;-cells in the islets of Langerhans.

    No full text
    Insulin-dependent diabetes is a complex multifactorial disorder characterized by loss or dysfunction of &beta;-cells. Pancreatic &beta;-cells differ in size, glucose responsiveness, insulin secretion and precursor cell potential; understanding the mechanisms that underlie this functional heterogeneity might make it possible to develop new regenerative approaches. Here we show that Fltp (also known as Flattop and Cfap126), a Wnt/planar cell polarity (PCP) effector and reporter gene, acts as a marker gene that subdivides endocrine cells into two subpopulations and distinguishes proliferation-competent from mature &beta;-cells with distinct molecular, physiological and ultrastructural features. Genetic lineage tracing revealed that endocrine subpopulations from Fltp-negative and -positive lineages react differently to physiological and pathological changes. The expression of Fltp increases when endocrine cells cluster together to form polarized and mature 3D islet mini-organs. We show that 3D architecture and Wnt/PCP ligands are sufficient to trigger &beta;-cell maturation. By contrast, the Wnt/PCP effector Fltp is not necessary for &beta;-cell development, proliferation or maturation. We conclude that 3D architecture and Wnt/PCP signalling underlie functional &beta;-cell heterogeneity and induce &beta;-cell maturation. The identification of Fltp as a marker for endocrine subpopulations sheds light on the molecular underpinnings of islet cell heterogeneity and plasticity and might enable targeting of endocrine subpopulations for the regeneration of functional &beta;-cell mass in diabetic patients
    corecore