250 research outputs found

    Poly(I:C) induces intense expression of c-IAP2 and cooperates with an IAP inhibitor in induction of apoptosis in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence that the toll-like receptor 3 (TLR3) is an interesting target for anti-cancer therapy. Unfortunately, most laboratory investigations about the impact of TLR3 stimulation on human malignant cells have been performed with very high concentrations - 5 to 100 μg/ml - of the prototype TLR3 ligand, poly(I:C). In a previous study focused on a specific type of human carcinoma - nasopharyngeal carcinoma - we have shown that concentrations of poly(I:C) as low as 100 ng/ml are sufficient to induce apoptosis of malignant cells when combined to a pharmacological antagonist of the IAP family based on Smac mimicry.</p> <p>Methods</p> <p>This observation prompted us to investigate the contribution of the IAP family in cell response to poly(I:C) in a variety of human malignant cell types.</p> <p>Results</p> <p>We report a rapid, intense and selective increase in c-IAP2 protein expression observed under stimulation by poly(I:C)(500 ng/ml) in all types of human malignant cells. In most cell types, this change in protein expression is underlain by an increase in c-IAP2 transcripts and dependent on the TLR3/TRIF pathway. When poly(I:C) is combined to the IAP inhibitor RMT 5265, a cooperative effect in apoptosis induction and/or inhibition of clonogenic growth is obtained in a large fraction of carcinoma and melanoma cell lines.</p> <p>Conclusions</p> <p>Currently, IAP inhibitors like RMT 5265 and poly(I:C) are the subject of separate therapeutic trials. In light of our observations, combined use of both types of compounds should be considered for treatment of human malignancies including carcinomas and melanomas.</p

    Clinical and Molecular Characterization of Ataxia with Oculomotor Apraxia Patients In Saudi Arabia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal recessive ataxias represent a group of clinically overlapping disorders. These include ataxia with oculomotor apraxia type1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2) and ataxia-telangiectasia-like disease (ATLD). Patients are mainly characterized by cerebellar ataxia and oculomotor apraxia. Although these forms are not quite distinctive phenotypically, different genes have been linked to these disorders. Mutations in the <it>APTX </it>gene were reported in AOA1 patients, mutations in <it>SETX </it>gene were reported in patients with AOA2 and mutations in <it>MRE11 </it>were identified in ATLD patients. In the present study we describe in detail the clinical features and results of genetic analysis of 9 patients from 4 Saudi families with ataxia and oculomotor apraxia.</p> <p>Methods</p> <p>This study was conducted in the period between 2005-2010 to clinically and molecularly characterize patients with AOA phenotype. Comprehensive sequencing of all coding exons of previously reported genes related to this disorder (<it>APTX</it>, <it>SETX </it>and <it>MRE11</it>).</p> <p>Results</p> <p>A novel nonsense truncating mutation c.6859 C > T, R2287X in <it>SETX </it>gene was identified in patients from one family with AOA2. The previously reported missense mutation W210C in <it>MRE11 </it>gene was identified in two families with autosomal recessive ataxia and oculomotor apraxia.</p> <p>Conclusion</p> <p>Mutations in <it>APTX </it>, <it>SETX </it>and <it>MRE11 </it>are common in patients with autosomal recessive ataxia and oculomotor apraxia. The results of the comprehensive screening of these genes in 4 Saudi families identified mutations in <it>SETX </it>and <it>MRE11 </it>genes but failed to identify mutations in <it>APTX </it>gene.</p

    5-Fluorouracil Induced Intestinal Mucositis via Nuclear Factor-κB Activation by Transcriptomic Analysis and In Vivo Bioluminescence Imaging

    Get PDF
    5-Fluorouracil (5-FU) is a commonly used drug for the treatment of malignant cancers. However, approximately 80% of patients undergoing 5-FU treatment suffer from gastrointestinal mucositis. The aim of this report was to identify the drug target for the 5-FU-induced intestinal mucositis. 5-FU-induced intestinal mucositis was established by intraperitoneally administering mice with 100 mg/kg 5-FU. Network analysis of gene expression profile and bioluminescent imaging were applied to identify the critical molecule associated with 5-FU-induced mucositis. Our data showed that 5-FU induced inflammation in the small intestine, characterized by the increased intestinal wall thickness and crypt length, the decreased villus height, and the increased myeloperoxidase activity in tissues and proinflammatory cytokine production in sera. Network analysis of 5-FU-affected genes by transcriptomic tool showed that the expression of genes was regulated by nuclear factor-κB (NF-κB), and NF-κB was the central molecule in the 5-FU-regulated biological network. NF-κB activity was activated by 5-FU in the intestine, which was judged by in vivo bioluminescence imaging and immunohistochemical staining. However, 5-aminosalicylic acid (5-ASA) inhibited 5-FU-induced NF-κB activation and proinflammatory cytokine production. Moreover, 5-FU-induced histological changes were improved by 5-ASA. In conclusion, our findings suggested that NF-κB was the critical molecule associated with the pathogenesis of 5-FU-induced mucositis, and inhibition of NF-κB activity ameliorated the mucosal damage caused by 5-FU

    Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.

    Get PDF
    Epstein-Barr virus (EBV), aetiologically linked to nasopharyngeal carcinoma (NPC), is the first human virus found to encode many miRNAs. However, how these viral miRNAs precisely regulate the tumour metastasis in NPC remains obscure. Here we report that EBV-miR-BART1 is highly expressed in NPC and closely associated with pathological and advanced clinical stages of NPC. Alteration of EBV-miR-BART1 expression results in an increase in migration and invasion of NPC cells in vitro and causes tumour metastasis in vivo. Mechanistically, EBV-miR-BART1 directly targets the cellular tumour suppressor PTEN. Reduction of PTEN dosage by EBV-miR-BART1 activates PTEN-dependent pathways including PI3K-Akt, FAK-p130(Cas) and Shc-MAPK/ERK1/2 signalling, drives EMT, and consequently increases migration, invasion and metastasis of NPC cells. Reconstitution of PTEN rescues all phenotypes generated by EBV-miR-BART1, highlighting the role of PTEN in EBV-miR-BART-driven metastasis in NPC. Our findings provide new insights into the metastasis of NPC regulated by EBV and advocate for developing clinical intervention strategies against NPC

    Molecular Typing and Phenotype Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Blood in Taiwan

    Get PDF
    BACKGROUND: Staphylococcus aureus causes a variety of severe infections such as bacteremia and sepsis. At present, 60-80% of S. aureus isolates from Taiwan are methicillin resistant (MRSA). It has been shown that certain MRSA clones circulate worldwide. The goals of this study were to identify MRSA clones in Taiwan and to correlate the molecular types of isolates with their phenotypes. METHODS: A total of 157 MRSA isolates from bacteremic patients were collected from nine medical centers. They were typed based on polymorphisms in agr, SCCmec, MLST, spa, and dru. Phenotypes characterized included Panton-Valentine leucocidin (pvl), inducible macrolide-lincosamide-streptogramin B resistance (MLSBi), vancomycin (VA) and daptomycin (DAP) minimal inhibitory concentrations (MIC), and superantigenic toxin gene profiles. Difference between two consecutive samples was determined by Mann-Whitney-U test, and difference between two categorical variables was determined by Fisher's exact test. RESULTS: Four major MRSA clone complexes CC1, CC5, CC8, and CC59 were found, including 4 CC1, 9 CC5, 111 CC8, and 28 CC59 isolates. These clones had the following molecular types: CC1: SCCmecIV and ST573; CC5: SCCmecII and ST5; CC8: SCCmecIII, ST239, and ST241, and CC59: SCCmecIV, SCCmecV(T), ST59, and ST338. The toxin gene profiles of these clones were CC1: sec-seg-(sei)-sell-selm-(seln)-selo; CC5: sec-seg-sei-sell-selm-(seln)-selp-tst1; CC8: sea-selk-selq, and CC59: seb-selk-selq. Most isolates with SCCmecV(T), ST59, spat437, and dru11 types were pvl(+) (13 isolates), while multidrug resistance (≥4 antimicrobials) were associated with SCCmecIII, ST239, spa t037, agrI, and dru14 (119 isolates) (p<0.001). One hundred and twenty four isolates with the following molecular types had higher VA MIC: SCCmecII and SCCmecIII; ST5, ST239, and ST241; spa t002, t037, and t421; dru4, dru10, dru12, dru13, and dru14 (p<0.05). No particular molecular types were found to be associated with MLSBi phenotype. CONCLUSIONS: Four major MRSA clone complexes were found in Taiwan. Further studies are needed to delineate the evolution of MRSA isolates

    Identification of Novel Therapeutic Targets in Microdissected Clear Cell Ovarian Cancers

    Get PDF
    Clear cell ovarian cancer is an epithelial ovarian cancer histotype that is less responsive to chemotherapy and carries poorer prognosis than serous and endometrioid histotypes. Despite this, patients with these tumors are treated in a similar fashion as all other ovarian cancers. Previous genomic analysis has suggested that clear cell cancers represent a unique tumor subtype. Here we generated the first whole genomic expression profiling using epithelial component of clear cell ovarian cancers and normal ovarian surface specimens isolated by laser capture microdissection. All the arrays were analyzed using BRB ArrayTools and PathwayStudio software to identify the signaling pathways. Identified pathways validated using serous, clear cell cancer cell lines and RNAi technology. In vivo validations carried out using an orthotopic mouse model and liposomal encapsulated siRNA. Patient-derived clear cell and serous ovarian tumors were grafted under the renal capsule of NOD-SCID mice to evaluate the therapeutic potential of the identified pathway. We identified major activated pathways in clear cells involving in hypoxic cell growth, angiogenesis, and glucose metabolism not seen in other histotypes. Knockdown of key genes in these pathways sensitized clear cell ovarian cancer cell lines to hypoxia/glucose deprivation. In vivo experiments using patient derived tumors demonstrate that clear cell tumors are exquisitely sensitive to antiangiogenesis therapy (i.e. sunitinib) compared with serous tumors. We generated a histotype specific, gene signature associated with clear cell ovarian cancer which identifies important activated pathways critical for their clinicopathologic characteristics. These results provide a rational basis for a radically different treatment for ovarian clear cell patients

    Protocol for a randomized controlled study of Iyengar yoga for youth with irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Irritable bowel syndrome affects as many as 14% of high school-aged students. Symptoms include discomfort in the abdomen, along with diarrhea and/or constipation and other gastroenterological symptoms that can significantly impact quality of life and daily functioning. Emotional stress appears to exacerbate irritable bowel syndrome symptoms suggesting that mind-body interventions reducing arousal may prove beneficial. For many sufferers, symptoms can be traced to childhood and adolescence, making the early manifestation of irritable bowel syndrome important to understand. The current study will focus on young people aged 14-26 years with irritable bowel syndrome. The study will test the potential benefits of Iyengar yoga on clinical symptoms, psychospiritual functioning and visceral sensitivity. Yoga is thought to bring physical, psychological and spiritual benefits to practitioners and has been associated with reduced stress and pain. Through its focus on restoration and use of props, Iyengar yoga is especially designed to decrease arousal and promote psychospiritual resources in physically compromised individuals. An extensive and standardized teacher-training program support Iyengar yoga's reliability and safety. It is hypothesized that yoga will be feasible with less than 20% attrition; and the yoga group will demonstrate significantly improved outcomes compared to controls, with physiological and psychospiritual mechanisms contributing to improvements.</p> <p>Methods/Design</p> <p>Sixty irritable bowel syndrome patients aged 14-26 will be randomly assigned to a standardized 6-week twice weekly Iyengar yoga group-based program or a wait-list usual care control group. The groups will be compared on the primary clinical outcomes of irritable bowel syndrome symptoms, quality of life and global improvement at post-treatment and 2-month follow-up. Secondary outcomes will include visceral pain sensitivity assessed with a standardized laboratory task (water load task), functional disability and psychospiritual variables including catastrophizing, self-efficacy, mood, acceptance and mindfulness. Mechanisms of action involved in the proposed beneficial effects of yoga upon clinical outcomes will be explored, and include the mediating effects of visceral sensitivity, increased psychospiritual resources, regulated autonomic nervous system responses and regulated hormonal stress response assessed via salivary cortisol.</p> <p>Trial registration</p> <p>ClinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01107977">NCT01107977</a>.</p

    Autoimmune Neuromuscular Disorders in Childhood

    Get PDF
    Autoimmune neuromuscular disorders in childhood include Guillain-Barré syndrome and its variants, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), juvenile myasthenia gravis (JMG), and juvenile dermatomyositis (JDM), along with other disorders rarely seen in childhood. In general, these diseases have not been studied as extensively as they have been in adults. Thus, treatment protocols for these diseases in pediatrics are often based on adult practice, but despite the similarities in disease processes, the most widely used treatments have different effects in children. For example, some of the side effects of chronic steroid use, including linear growth deceleration, bone demineralization, and chronic weight issues, are more consequential in children than in adults. Although steroids remain a cornerstone of therapy in JDM and are useful in many cases of CIDP and JMG, other immunomodulatory therapies with similar efficacy may be used more frequently in some children to avoid these long-term sequelae. Steroids are less expensive than most other therapies, but chronic steroid therapy in childhood may lead to significant and costly medical complications. Another example is plasma exchange. This treatment modality presents challenges in pediatrics, as younger children require central venous access for this therapy. However, in older children and adolescents, plasma exchange is often feasible via peripheral venous access, making this treatment more accessible than might be expected in this age group. Intravenous immunoglobulin also is beneficial in several of these disorders, but its high cost may present barriers to its use in the future. Newer steroid-sparing immunomodulatory agents, such as azathioprine, tacrolimus, mycophenolate mofetil, and rituximab, have not been studied extensively in children. They show promising results from case reports and retrospective cohort studies, but there is a need for comparative studies looking at their relative efficacy, tolerability, and long-term adverse effects (including secondary malignancy) in children
    corecore