92 research outputs found

    Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps

    Get PDF
    Advances in sequencing technology allow genomes to be sequenced at vastly decreased costs. However, the assembled data frequently are highly fragmented with many gaps. We present a practical approach that uses Illumina sequences to improve draft genome assemblies by aligning sequences against contig ends and performing local assemblies to produce gap-spanning contigs. The continuity of a draft genome can thus be substantially improved, often without the need to generate new data

    The genome of <i>Strongyloides </i>spp. gives insights into protein families with a putative role in nematode parasitism

    Get PDF
    SUMMARYParasitic nematodes are important and abundant parasites adapted to live a parasitic lifestyle, with these adaptations all aimed at facilitating their survival and reproduction in their hosts. The recently sequenced genomes of fourStrongyloidesspecies, gastrointestinal parasites of humans and other animals, alongside transcriptomic and proteomic analysis of free-living and parasitic stages of their life cycles have revealed a number of protein families with a putative role in their parasitism. Many of these protein families have also been associated with parasitism in other parasitic nematode species, suggesting that these proteins may play a fundamental role in nematode parasitism more generally. Here, we review key protein families that have a putative role inStrongyloides’ parasitism – acetylcholinesterases, astacins, aspartic proteases, prolyl oligopeptidases, proteinase inhibitors (trypsin inhibitors and cystatins), SCP/TAPS and transthyretin-like proteins – and the evidence for their key, yet diverse, roles in the parasitic lifestyle.</jats:p

    An expressed, endogenous nodavirus-like element captured by a retrotransposon in the genome of the plant parasitic nematode Bursaphelenchus xylophilus

    Get PDF
    Recently, nematode viruses infecting Caenorhabditis elegans have been reported from the family Nodaviridae, the first nematode viruses described. Here, we report the observation of a novel endogenous viral element (EVE) in the genome of Bursaphelenchus xylophilus, a plant parasitic nematode unrelated to other nematodes from which viruses have been characterised. This element derives from a different clade of nodaviruses to the previously reported nematode viruses. This represents the first endogenous nodavirus sequence, the first nematode endogenous viral element, and significantly extends our knowledge of the potential diversity of the Nodaviridae. A search for endogenous elements related to the Nodaviridae did not reveal any elements in other available nematode genomes. Further surveillance for endogenous viral elements is warranted as our knowledge of nematode genome diversity, and in particular of free-living nematodes, expands

    Germline transgenesis and insertional mutagenesis in Schistosoma mansoni mediated by murine leukemia virus

    Get PDF
    Functional studies will facilitate characterization of role and essentiality of newly available genome sequences of the human schistosomes, Schistosoma mansoni, S. japonicum and S. haematobium. To develop transgenesis as a functional approach for these pathogens, we previously demonstrated that pseudotyped murine leukemia virus (MLV) can transduce schistosomes leading to chromosomal integration of reporter transgenes and short hairpin RNA cassettes. Here we investigated vertical transmission of transgenes through the developmental cycle of S. mansoni after introducing transgenes into eggs. Although MLV infection of schistosome eggs from mouse livers was efficient in terms of snail infectivity, \u3e10-fold higher transgene copy numbers were detected in cercariae derived from in vitro laid eggs (IVLE). After infecting snails with miracidia from eggs transduced by MLV, sequencing of genomic DNA from cercariae released from the snails also revealed the presence of transgenes, demonstrating that transgenes had been transmitted through the asexual developmental cycle, and thereby confirming germline transgenesis. High-throughput sequencing of genomic DNA from schistosome populations exposed to MLV mapped widespread and random insertion of transgenes throughout the genome, along each of the autosomes and sex chromosomes, validating the utility of this approach for insertional mutagenesis. In addition, the germline-transmitted transgene encoding neomycin phosphotransferase rescued cultured schistosomules from toxicity of the antibiotic G418, and PCR analysis of eggs resulting from sexual reproduction of the transgenic worms in mice confirmed that retroviral transgenes were transmitted to the next (F1) generation. These findings provide the first description of wide-scale, random insertional mutagenesis of chromosomes and of germline transmission of a transgene in schistosomes. Transgenic lines of schistosomes expressing antibiotic resistance could advance functional genomics for these significant human pathogens

    HIV-1 Integrates Widely throughout the Genome of the Human Blood Fluke Schistosoma mansoni.

    Get PDF
    Schistosomiasis is the most important helminthic disease of humanity in terms of morbidity and mortality. Facile manipulation of schistosomes using lentiviruses would enable advances in functional genomics in these and related neglected tropical diseases pathogens including tapeworms, and including their non-dividing cells. Such approaches have hitherto been unavailable. Blood stream forms of the human blood fluke, Schistosoma mansoni, the causative agent of the hepatointestinal schistosomiasis, were infected with the human HIV-1 isolate NL4-3 pseudotyped with vesicular stomatitis virus glycoprotein. The appearance of strong stop and positive strand cDNAs indicated that virions fused to schistosome cells, the nucleocapsid internalized and the RNA genome reverse transcribed. Anchored PCR analysis, sequencing HIV-1-specific anchored Illumina libraries and Whole Genome Sequencing (WGS) of schistosomes confirmed chromosomal integration; \u3e8,000 integrations were mapped, distributed throughout the eight pairs of chromosomes including the sex chromosomes. The rate of integrations in the genome exceeded five per 1,000 kb and HIV-1 integrated into protein-encoding loci and elsewhere with integration bias dissimilar to that of human T cells. We estimated ~ 2,100 integrations per schistosomulum based on WGS, i.e. about two or three events per cell, comparable to integration rates in human cells. Accomplishment in schistosomes of post-entry processes essential for HIV-1replication, including integrase-catalyzed integration, was remarkable given the phylogenetic distance between schistosomes and primates, the natural hosts of the genus Lentivirus. These enigmatic findings revealed that HIV-1 was active within cells of S. mansoni, and provided the first demonstration that HIV-1 can integrate into the genome of an invertebrate

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker&#x27;s yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker&#x27;s yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery

    Get PDF
    &lt;p&gt;Background: The small ruminant parasite Haemonchus contortus is the most widely used parasitic nematode in drug discovery, vaccine development and anthelmintic resistance research. Its remarkable propensity to develop resistance threatens the viability of the sheep industry in many regions of the world and provides a cautionary example of the effect of mass drug administration to control parasitic nematodes. Its phylogenetic position makes it particularly well placed for comparison with the free-living nematode Caenorhabditis elegans and the most economically important parasites of livestock and humans.&lt;/p&gt; &lt;p&gt;Results: Here we report the detailed analysis of a draft genome assembly and extensive transcriptomic dataset for H. contortus. This represents the first genome to be published for a strongylid nematode and the most extensive transcriptomic dataset for any parasitic nematode reported to date. We show a general pattern of conservation of genome structure and gene content between H. contortus and C. elegans, but also a dramatic expansion of important parasite gene families. We identify genes involved in parasite-specific pathways such as blood feeding, neurological function, and drug metabolism. In particular, we describe complete gene repertoires for known drug target families, providing the most comprehensive understanding yet of the action of several important anthelmintics. Also, we identify a set of genes enriched in the parasitic stages of the lifecycle and the parasite gut that provide a rich source of vaccine and drug target candidates.&lt;/p&gt; &lt;p&gt;Conclusions: The H. contortus genome and transcriptome provides an essential platform for postgenomic research in this and other important strongylid parasites. &lt;/p&gt

    Biology and genome of a newly discovered sibling species of Caenorhabditis elegans

    Get PDF
    A ‘sibling’ species of the model organism Caenorhabditis elegans has long been sought for use in comparative analyses that would enable deep evolutionary interpretations of biological phenomena. Here, we describe the first sibling species of C. elegans, C. inopinata n. sp., isolated from fig syconia in Okinawa, Japan. We investigate the morphology, developmental processes and behaviour of C. inopinata, which differ significantly from those of C. elegans. The 123-Mb C. inopinata genome was sequenced and assembled into six nuclear chromosomes, allowing delineation of Caenorhabditis genome evolution and revealing unique characteristics, such as highly expanded transposable elements that might have contributed to the genome evolution of C. inopinata. In addition, C. inopinata exhibits massive gene losses in chemoreceptor gene families, which could be correlated with its limited habitat area. We have developed genetic and molecular techniques for C. inopinata; thus C. inopinata provides an exciting new platform for comparative evolutionary studies

    Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction.

    Get PDF
    Whipworms are common soil-transmitted helminths that cause debilitating chronic infections in man. These nematodes are only distantly related to Caenorhabditis elegans and have evolved to occupy an unusual niche, tunneling through epithelial cells of the large intestine. We report here the whole-genome sequences of the human-infective Trichuris trichiura and the mouse laboratory model Trichuris muris. On the basis of whole-transcriptome analyses, we identify many genes that are expressed in a sex- or life stage-specific manner and characterize the transcriptional landscape of a morphological region with unique biological adaptations, namely, bacillary band and stichosome, found only in whipworms and related parasites. Using RNA sequencing data from whipworm-infected mice, we describe the regulated T helper 1 (TH1)-like immune response of the chronically infected cecum in unprecedented detail. In silico screening identified numerous new potential drug targets against trichuriasis. Together, these genomes and associated functional data elucidate key aspects of the molecular host-parasite interactions that define chronic whipworm infection

    A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni

    Get PDF
    Schistosomiasis is one of the most prevalent parasitic diseases, affecting millions of people in developing countries. Amongst the human-infective species, Schistosoma mansoni is also the most commonly used in the laboratory and here we present the systematic improvement of its draft genome. We used Sanger capillary and deep-coverage Illumina sequencing from clonal worms to upgrade the highly fragmented draft 380 Mb genome to one with only 885 scaffolds and more than 81% of the bases organised into chromosomes. We have also used transcriptome sequencing (RNA-seq) from four time points in the parasite's life cycle to refine gene predictions and profile their expression. More than 45% of predicted genes have been extensively modified and the total number has been reduced from 11,807 to 10,852. Using the new version of the genome, we identified trans-splicing events occurring in at least 11% of genes and identified clear cases where it is used to resolve polycistronic transcripts. We have produced a high-resolution map of temporal changes in expression for 9,535 genes, covering an unprecedented dynamic range for this organism. All of these data have been consolidated into a searchable format within the GeneDB (www.genedb.org) and SchistoDB (www.schistodb.net) databases. With further transcriptional profiling and genome sequencing increasingly accessible, the upgraded genome will form a fundamental dataset to underpin further advances in schistosome research
    • …
    corecore