106 research outputs found

    Whole-Genome SNP Association in the Horse: Identification of a Deletion in Myosin Va Responsible for Lavender Foal Syndrome

    Get PDF
    Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals

    PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    Get PDF
    Background: Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology: PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ~100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance: PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior

    Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Get PDF
    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone

    The reliability and validity of a Japanese version of symptom checklist 90 revised

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To examine the validity and reliability of a Japanese version of the Symptom Checklist 90 Revised (SCL-90-R (J)).</p> <p>Methods</p> <p>The English SCL-90-R was translated to Japanese and the Japanese version confirmed by back-translation. To determine the factor validity and internal consistency of the nine primary subscales, 460 people from the community completed SCL-90-R(J). Test-retest reliability was examined for 104 outpatients and 124 healthy undergraduate students. The convergent-discriminant validity was determined for 80 inpatients who replied to both SCL-90-R(J) and the Minnesota Multiphasic Personality Inventory (MMPI).</p> <p>Results</p> <p>The correlation coefficients between the nine primary subscales and items were .26 to .78. Cronbach's alpha coefficients were from .76 (Phobic Anxiety) to .86 (Interpersonal Sensitivity). Pearson's correlation coefficients between test-retest scores were from .81 (Psychoticism) to .90 (Somatization) for the outpatients and were from .64 (Phobic Anxiety) to .78 (Paranoid Ideation) for the students. Each of the nine primary subscales correlated well with their corresponding constructs in the MMPI.</p> <p>Conclusion</p> <p>We confirmed the validity and reliability of SCL-90-R(J) for the measurement of individual distress. The nine primary subscales were consistent with the items of the original English version.</p

    Translations equations to compare ActiGraph GT3X and Actical accelerometers activity counts

    Get PDF
    Background: This study aimed to develop a translation equation to enable comparison between Actical and ActiGraph GT3X accelerometer counts recorded minute by minute. Methods: Five males and five females of variable height, weight, body mass index and age participated in this investigation. Participants simultaneously wore an Actical and an ActiGraph accelerometer for two days. Conversion algorithms and R2 were calculated day by day for each subject between the omnidirectional Actical and three different ActiGraph (three-dimensional) outputs: 1) vertical direction, 2) combined vector, and 3) a custom vector. Three conversion algorithms suitable for minute/minute conversions were then calculated from the full data set. Results: The vertical ActiGraph activity counts demonstrated the closest relationship with the Actical, with consistent moderate to strong conversions using the algorithm: y = 0.905x, in the day by day data (R2 range: 0.514 to 0.989 and average: 0.822) and full data set (R2 = 0.865). Conclusions: The Actical is most sensitive to accelerations in the vertical direction, and does not closely correlate with three-dimensional ActiGraph output. Minute by minute conversions between the Actical and ActiGraphvertical component can be confidently performed between data sets and might allow further synthesis of information between studies

    Targeted analysis of four breeds narrows equine Multiple Congenital Ocular Anomalies locus to 208 kilobases

    Get PDF
    The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n = 246; MCOA phenotype, n = 83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208 kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain

    Cluster Analysis of Symptoms Among Patients with Upper Extremity Musculoskeletal Disorders

    Get PDF
    Introduction Some musculoskeletal disorders of the upper extremity are not readily classified. The study objective was to determine if there were symptom patterns in self-identified repetitive strain injury (RSI) patients. Methods Members (n = 700) of the Dutch RSI Patients Association filled out a detailed symptom questionnaire. Factor analysis followed by cluster analysis grouped correlated symptoms. Results Eight clusters, based largely on symptom severity and quality were formulated. All but one cluster showed diffuse symptoms; the exception was characterized by bilateral symptoms of stiffness and aching pain in the shoulder/neck. Conclusions Case definitions which localize upper extremity musculoskeletal disorders to a specific anatomical area may be incomplete. Future clustering studies should rely on both signs and symptoms. Data could be collected from health care providers prospectively to determine the possible prognostic value of the identified clusters with respect to natural history, chronicity, and return to work
    corecore