77 research outputs found
The interaction of polymer dispersed liquid crystal sensors with ultrasound
Polymer dispersed liquid crystals (PDLCs) have been shown to be sensitive to ultrasound through the acousto-optic effect. The acousto-optic response of PDLCs was studied over a broad frequency range (0.3–10 MHz). We demonstrate that the displacements required to produce acousto-optic clearing of PDLC films can be as low as a few nanometers, which is at least 103 times smaller than the PDLC droplet size, is 105 times smaller than the PDLC layer thickness, and of the order of the molecular size of the liquid crystal constituents. This suggests that the acousto-optic effect in PDLCs is due to the microscopic effects of the LC reorientation under torques or flows rather than the LC reorientation through macroscopic droplet deformation. The displacement required for clearing is related to the frequency of operation via an exponential decay. We attribute the observed frequency response to a freezing out of the rotational motion around the short axis of the liquid crystal. The reported frequency dependence and displacements required indicate that the effects and materials described here could be used for ultrasound visualization in a non-destructive testing context
Characterisation of small defects using miniaturised EMAT system
Many surface breaking defects, such as those caused by thermal fatigue or stress corrosion, have finite lateral dimensions. However, much of the research considers significantly larger simulated defects. This paper considers defects with mm-dimensions, and presents a method for characterisation of their length and depth. This is done using non-contact ultrasonic techniques, including a pair of electromagnetic acoustic transducers (EMATs) with significantly reduced size compared to standard industrial EMATs. Defects with dimensions of 1–11 mm length and 0.5–2 mm depth are measured. All information is obtained from a single raster scan of a sample, considering transmission and enhancement of Rayleigh waves, and introducing the defect cross-section. The lateral size resolution for the scan steps chosen is
±
1 mm, and depth resolution is
±
0.5 mm. The method, being non-contact, is also demonstrated on a sample with a 110 μm thick coating
Ultrasonic inspection and self-healing of Ge and 3C-SiC semiconductor membranes
Knowledge of the mechanical properties and stability of thin film structures is important for device operation. Potential failures related to crack initiation and growth must be identified early, to enable healing through e.g. annealing. Here, three square suspended membranes, formed from a thin layer of cubic silicon carbide (3C-SiC) or germanium (Ge) on a silicon substrate, were characterised by their response to ultrasonic excitation. The resonant frequencies and mode shapes were measured during thermal cycling over a temperature range of 20--100~C. The influence of temperature on the stress was explored by comparison with predictions from a model of thermal expansion of the combined membrane and substrate. For an ideal, non-cracked sample the stress and Q-factor behaved as predicted. In contrast, for a 3C-SiC and a Ge membrane that had undergone vibration and thermal cycling to simulate extended use, measurements of the stress and Q-factor showed the presence of damage, with the 3C-SiC membrane subsequently breaking. However, the damaged Ge sample showed an improvement to the resonant behaviour on subsequent heating. Scanning electron microscopy showed that this was due to a self-healing of sub-micrometer cracks, caused by expansion of the germanium layer to form bridges over the cracked regions, with the effect also observable in the ultrasonic inspection
Miniaturised SH EMATs for fast robotic screening of wall thinning in steel plates
Electromagnetic acoustic transducers (EMATs) are well suited to generating and detecting a variety of different ultrasonic wavemodes, without the need for couplant, and they can be operated through some coatings. EMATs can be used to generate shear horizontal (SH) waves, which show promise for fast screening of wall thinning and other defects. However, commercial SH-wave EMATs are not suitable for robotic implementation on ferritic steel due to the large magnetic drag force from the magnets. This article describes the design and characterisation of miniaturised SH guided wave EMATs, which significantly reduce the magnetic drag and enable mounting onto a small crawler robot for sample scanning. The performance of the miniaturised EMATs is characterised and compared to a commercial EMAT. It is shown that signal to noise ratio is reduced, but remains within an acceptable range to use on steel. The bandwidth and directivity are increased, depending on the exact design used. Their ability to detect flat bottomed holes mimicking wall thinning is also tested
Projection of holograms from photorefractive OASLMs
Liquid crystals doped with fullerenes and carbon nanotubes (CNTs) act as good optical nonlinear materials. We have used these materials to build optically-addressed spatial light modulators (OASLMs). The devices comprise a single layer of doped liquid crystal acting as an active layer. Undoped LC devices with surfaces coated with fullerenes are also studied. Such OASLMs allow recording of phase holograms, and we record by imaging pre-calculated pre-recorded holograms. Writing is performed at normal incidence and reading at 45° oblique incidence. Both transmission and reflection modes of operation are used. Experimental results as well as comparison with commercially available OASLMs are presented
Dielectric anisotropy of nematic liquid crystals loaded with carbon nanotubes in microwave range
Liquid crystals are attractive materials for microwave applications as tunable dielectrics owing to low losses and high anisotropy of dielectric properties. The possibility of further enhancing their dielectric anisotropy is studied by loading with highly polarisable and anisotropic rods–carbon nanotubes at various concentrations. The studies are performed using two different methods, one in the range 1–4 GHz and the other at 30 GHz. More than two times increase of microwave dielectric anisotropy in liquid crystals is reported when loaded with 0.01%wt of carbon nanotubes, which is a metastable suspension and 28% increase in an equilibrated suspension. The stability of the LC-CNT composites is discussed
Laser Ultrasonic Characterisation of Membranes for Use as MEMS
Germanium (Ge) on Silicon (Si) has the potential to produce a wide variety of devices, including sensors, solar cells and transistors. Modification of these materials so that a suspended membrane layer is formed, through removing regions of the Si substrate, offers the potential for sensors with a more rapid response and higher sensitivity. Such membranes are a very simple micro-electronic mechanical system (MEMS). It is essential to ensure that the membranes are robust against shock and vibration, with well-characterised resonant frequencies, prior to any practical application.
We present work using laser interferometry to characterise the resonant modes of membranes produced from Ge or silicon carbide (SiC) on a Si substrate, with the membranes typically having sub-mm lateral dimensions. Two-dimensional scanning of the sample enables visualisation of each mode. The stress measured from the resonant frequencies agrees well with that calculated from the growth conditions. SiC is shown to provide a more robust platform for electronics, while Ge offers better resonant properties. Defects on the membranes alter the resonant mode, and this offers a potential technique for characterising production quality or lifetime testing for the MEMS produced
Ultrasound sensing using the acousto-optic effect in polymer dispersed liquid crystals
Acousto-optic effects are demonstrated in polymer dispersed liquid crystal (PDLC) films, showing promise for applications in ultrasound sensing. The PDLC films are used to image two displacement profiles of an air-coupled flexural transducers resonant modes at 295 kHz and 730 kHz. Results are confirmed using laser vibrometry. The regions on the transducers with the largest displacements are clearly imaged by the PDLC films, with the resolution agreeing well with laser vibrometry scanning. Imaging takes significantly less time than a scanning system (switching time of a few seconds, as compared to 8 hours for laser vibrometry). Heating effects are carefully monitored using thermal imaging, and are found not to be the main cause of PDLC clearing
Magnetic phase transitions in Gd64Sc36 studied using non-contact ultrasonics
The speed and attenuation of ultrasound propagation can be used to determine material properties and identify phase transitions. Standard ultrasonic contact techniques are not always convenient due to the necessity of using couplant; however, recently reliable non-contact ultrasonic techniques involving electromagnetic generation and detection of ultrasound with electromagnetic acoustic transducers (EMATs) have been developed for use on electrically conducting and/or magnetic materials. We present a detailed study of magnetic phase transitions in a single crystal sample of Gd64Sc36 magnetic alloy using contact and non-contact ultrasonic techniques for two orientations of external magnetic field. Phase diagrams are constructed based on measurements of elastic constant C33, the attenuation and the efficiency of generation when using an EMAT. The EMATs are shown to provide additional information related to the magnetic phase transitions in the studied sample, and results identify a conical helix phase in Gd64Sc36 in the magnetic field orientation
- …