9 research outputs found

    Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study

    No full text
    BACKGROUND: Epithelioid sarcoma is a rare and aggressive soft-tissue sarcoma subtype. Over 90% of tumours have lost INI1 expression, leading to oncogenic dependence on the transcriptional repressor EZH2. In this study, we report the clinical activity and safety of tazemetostat, an oral selective EZH2 inhibitor, in patients with epithelioid sarcoma. METHODS: In this open-label, phase 2 basket study, patients were enrolled from 32 hospitals and clinics in Australia, Belgium, Canada, France, Germany, Italy, Taiwan, the USA, and the UK into seven cohorts of patients with different INI1-negative solid tumours or synovial sarcoma. Patients eligible for the epithelioid sarcoma cohort (cohort 5) were aged 16 years or older with histologically confirmed, locally advanced or metastatic epithelioid sarcoma; documented loss of INI1 expression by immunohistochemical analysis or biallelic SMARCB1 (the gene that encodes INI1) alterations, or both; and an Eastern Cooperative Oncology Group performance status score of 0-2. Patients received 800 mg tazemetostat orally twice per day in continuous 28-day cycles until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint was investigator-assessed objective response rate measured according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Secondary endpoints were duration of response, disease control rate at 32 weeks, progression-free survival, overall survival, and pharmacokinetic and pharmacodynamic analyses (primary results reported elsewhere). Time to response was also assessed as an exploratory endpoint. Activity and safety were assessed in the modified intention-to-treat population (ie, patients who received one or more doses of tazemetostat). This trial is registered with ClinicalTrials.gov, NCT02601950, and is ongoing. FINDINGS: Between Dec 22, 2015, and July 7, 2017, 62 patients with epithelioid sarcoma were enrolled in the study and deemed eligible for inclusion in this cohort. All 62 patients were included in the modified intention-to-treat analysis. Nine (15% [95% CI 7-26]) of 62 patients had an objective response at data cutoff (Sept 17, 2018). At a median follow-up of 13路8 months (IQR 7路8-19路0), median duration of response was not reached (95% CI 9路2-not estimable). 16 (26% [95% CI 16-39]) patients had disease control at 32 weeks. Median time to response was 3路9 months (IQR 1路9-7路4). Median progression-free survival was 5路5 months (95% CI 3路4-5路9), and median overall survival was 19路0 months (11路0-not estimable). Grade 3 or worse treatment-related adverse events included anaemia (four [6%]) and weight loss (two [3%]). Treatment-related serious adverse events occurred in two patients (one seizure and one haemoptysis). There were no treatment-related deaths. INTERPRETATION: Tazemetostat was well tolerated and showed clinical activity in this cohort of patients with advanced epithelioid sarcoma characterised by loss of INI1/SMARCB1. Tazemetostat has the potential to improve outcomes in patients with advanced epithelioid sarcoma. A phase 1b/3 trial of tazemetostat plus doxorubicin in the front-line setting is currently underway (NCT04204941). FUNDING: Epizyme.status: publishe

    Small molecule inhibitors and CRISPR/Cas9 mutagenesis demonstrate that SMYD2 and SMYD3 activity are dispensable for autonomous cancer cell proliferation.

    No full text
    A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed. In this paper we illustrate these general themes by providing detailed studies of small molecule inhibitors of the enzymatic activity of two members of the SMYD branch of the protein lysine methyltransferases, SMYD2 and SMYD3. We show that tool compounds as well as CRISPR/Cas9 fail to reproduce many of the cell proliferation findings associated with SMYD2 and SMYD3 inhibition previously obtained with RNAi based approaches and with early stage chemical probes

    Characterization of EPZ028862 as an inhibitor of SMYD3.

    No full text
    <p>A) Representative SMYD3 biochemical dose-response curve for EPZ028862 with a mean IC<sub>50</sub> value and standard deviation of 1.80 卤 0.06 nM from 2 experiments. B) Structure of EPZ028862 (cyan) with SMYD3 (green) and SAM (yellow) (PDB ID 5V37); water molecules are represented with red spheres. Electron density (2Fo鈭扚c, 1蟽) for the compound is shown. Hydrogen bonds are indicated as dashed lines. C) Anti-proliferative activity of the SMYD3 inhibitor EPZ028862 across a broad panel of cancer cell lines in 2D culture (left) and in 3D culture (right). The 25 渭M value represents the highest dose tested. Each value represents the mean of three replicates. Error bars represent the standard deviation (not readily visible on scale).</p

    Gene ablation techniques show no dependence on SMYD2 or SMYD3 for cancer cell proliferation.

    No full text
    <p>Waterfall plot representing LogP RSA scores for sgRNAs targeting A) SMYD2 and B) SMYD3. 313 cell lines were infected with a library of 6500 sgRNAs targeting 600 different genes. LogP RSA scores represent depletion of guides from an infected cell population. Each bar represents a different cell line. Bars are colored by cancer subtype. C) Percent confluency of Hep3B cells infected with CRISPR viruses containing CAS9 and sgRNAs targeting HBE-1, EZH2 (negative controls) or SMYD3. Cell density was evaluated using an Incucyte Zoom. Growth curves were initiated 24 days following virus infection and puromycin selection. Plotted data is the average of three biological replicates. Error bars represent standard deviation (not readily visible on scale). D) SMYD3 western blot of lysates derived from Hep3B cells infected with CAS9 and SMYD3 sgRNA. Parental Hep3Bs and Hep3Bs stably infected with HBE-1, EZH2 (negative controls) or SMYD3 were lysed and probed for SMYD3 levels by western. GAPDH levels were evaluated as a loading control.</p

    Anti-proliferative activity of SMYD2 inhibitors.

    No full text
    <p>(A) Correlation plots of (left) cellular methylation IC<sub>50</sub> as a function of biochemical IC<sub>50</sub> and (right) cell proliferation IC<sub>50</sub> as a function of cellular methylation IC<sub>50</sub> for SMYD2 inhibitors. (B) Western blot of BTF3 methylation showing dose dependent effects of EPZ032597. Data is representative of two independent experiments. (C) The effect of EPZ032597 on proliferation in a broad panel of cancer cell lines. (D) The effect LLY507 on proliferation of a broad panel of cancer cell lines. Values for C) and D) are the average of three biological replicates; error bars represent standard deviations (not readily visible on scale for all points). The 10 渭M value represents the highest dose tested.</p
    corecore