527 research outputs found

    Trophic Transfer of Arsenic from an Aquatic Insect to Terrestrial Insect Predators.

    Get PDF
    The movement of energy and nutrients from aquatic to terrestrial ecosystems can be substantial, and emergent aquatic insects can serve as biovectors not only for nutrients, but also for contaminants present in the aquatic environment. The terrestrial predators Tenodera aridifolia sinensis (Mantodea: Mantidae) and Tidarren haemorrhoidale (Araneae: Theridiidae) and the aquatic predator Buenoa scimitra (Hemiptera: Notonectidae) were chosen to evaluate the efficacy of arsenic transfer between aquatic and terrestrial environments. Culex tarsalis larvae were reared in either control water or water containing 1000 µg l(-1) arsenic. Adults that emerged from the control and arsenic treatments were fed to the terrestrial predators, and fourth instar larvae were fed to the aquatic predator reared in control or arsenic contaminated water. Tenodera a. sinensis fed arsenic-treated Cx. tarsalis accumulated 658±130 ng g(-1) of arsenic. There was no significant difference between control and arsenic-fed T. haemorrhoidale (range 142-290 ng g(-1)). Buenoa scimitra accumulated 5120±406 ng g(-1) of arsenic when exposed to arsenic-fed Cx. tarsalis and reared in water containing 1000 µg l(-1) arsenic. There was no significant difference between controls or arsenic-fed B. scimitra that were not exposed to water-borne arsenic, indicating that for this species environmental exposure was more important in accumulation than strictly dietary arsenic. These results indicate that transfer to terrestrial predators may play an important role in arsenic cycling, which would be particularly true during periods of mass emergence of potential insect biovectors. Trophic transfer within the aquatic environment may still occur with secondary predation, or in predators with different feeding strategies

    Evidence for Height and Immune Function Trade-offs Among Preadolescents in a High Pathogen Population

    Get PDF
    Background In an energy-limited environment, caloric investments in one characteristic should trade-off with investments in other characteristics. In high pathogen ecologies, biasing energy allocation towards immune function over growth would be predicted, given strong selective pressures against early-life mortality. Methodology In the present study, we use flow cytometry to examine trade-offs between adaptive immune function (T cell subsets, B cells), innate immune function (natural killer cells), adaptive to innate ratio and height-for-age z scores (HAZ) among young children (N = 344; aged 2 months–8 years) in the Bolivian Amazon, using maternal BMI and child weight-for-height z scores (WHZ) as proxies for energetic status. Results Markers of adaptive immune function negatively associate with child HAZ, a pattern most significant in preadolescents (3+ years). In children under three, maternal BMI appears to buffer immune and HAZ associations, while child energetic status (WHZ) moderates relationships in an unexpected direction: HAZ and immune associations are greater in preadolescents with higher WHZ. Children with low WHZ maintain similar levels of adaptive immune function, but are shorter compared to high WHZ peers. Conclusions Reduced investment in growth in favor of immunity may be necessary for survival in high pathogen contexts, even under energetic constraints. Further, genetic and environmental factors are important considerations for understanding variation in height within this population. These findings prompt consideration of whether there may be a threshold of investment into adaptive immunity required for survival in high pathogen environments, and thus question the universal relevance of height as a marker of health. Lay Summary Adaptive immune function is negatively associated with child height in this high pathogen environment. Further, low weight-for-height children are shorter but maintain similar immune levels. Findings question the relevance of height as a universal health marker, given that costs and benefits of height versus immunity may be calibrated to local ecology

    Modeling of Stardust Entry at High Altitude, Part 1: Flowfield Analysis

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83562/1/AIAA-37360-273.pd

    Do Wealth and Inequality Associate with Health in a Small-Scale Subsistence Society?

    Get PDF
    In high-income countries, one’s relative socio-economic position and economic inequality may affect health and well-being, arguably via psychosocial stress. We tested this in a small-scale subsistence society, the Tsimane, by associating relative household wealth (n = 871) and community-level wealth inequality (n = 40, Gini = 0.15–0.53) with a range of psychological variables, stressors, and health outcomes (depressive symptoms [n = 670], social conflicts [n = 401], non-social problems [n = 398], social support [n = 399], cortisol [n = 811], body mass index [n = 9,926], blood pressure [n = 3,195], self-rated health [n = 2523], morbidities [n = 1542]) controlling for community-average wealth, age, sex, household size, community size, and distance to markets. Wealthier people largely had better outcomes while inequality associated with more respiratory disease, a leading cause of mortality. Greater inequality and lower wealth were associated with higher blood pressure. Psychosocial factors did not mediate wealth-health associations. Thus, relative socio-economic position and inequality may affect health across diverse societies, though this is likely exacerbated in high-income countries
    • …
    corecore