60 research outputs found

    THE COGNITIVE OVERRIDE OF ANXIETY IS ACCOMPLISHED BY SOCIAL FAMILIARITY AND IS MEDIATED BY THE MEDIAL PREFRONTAL CORTEX.

    Get PDF
    poster abstractIn rats, social familiarity can alleviate anxiety-like behavior observed in the social interaction test. We propose that a neural circuit that includes the medial Prefrontal Cortex (mPFC) and Basolateral Amygdala (BLA), in which the mPFC processes social cues of familiarity and suppresses BLA outputs that lead to anxiety-like behavior, regulate this social familiarity effect. To investigate the effect of social familiarity on anxiety, we developed the Social Interaction-Habituation (SI-h) paradigm, consisting of a 5 min social interaction test repeated daily with the experimental rat exposed to the same partner rat on each test day. As the experimental rat becomes “familiar” with the partner rat, a significant increase in SI time is observed by day 5 compared to day 1, producing a SI-familiarity effect (SI-f). This SI-f effect is dependent on the presence of an anxiogenic stimulus (bright light), and familiarity to a partner rat. No increases in SI times were observed in rats when the SI-h test was performed under dark conditions or when exposed to novel partners on days 1-5. After establishing SI-f, exposure to a novel partner significantly reduces SI times, suggesting the SI-f effect is a result of recognition of the familiar partner rat. Re-exposure to the original partner in a new environment produces an enhanced SI-f effect; SI time significantly increases from day 1 by day 3. Bilateral inhibition of the mPFC with a GABAA agonist blocks the anxiolytic SI-f effect. Exposure to the same partner 24 hours following mPFC inhibition, SI times increase significantly higher than day 1. These data indicate that the mPFC activity is necessary for expression of the SI-f effect

    Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell

    Get PDF
    RATIONALE: Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). OBJECTIVE: The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. METHODS: Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM), or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. RESULTS: The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in brain-derived neurotrophic factor (BDNF), 2.4-fold decrease in glial cell line-derived neurotrophic factor (GDNF), 10.3-fold increase in vesicular glutamate transporter 1 (Vglut1)) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. CONCLUSION: The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could be the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system

    Co-administration of ethanol and nicotine: the enduring alterations in the rewarding properties of nicotine and glutamate activity within the mesocorticolimbic system of female alcohol-preferring (P) rats

    Get PDF
    RATIONALE: The co-abuse of ethanol (EtOH) and nicotine (NIC) increases the likelihood that an individual will relapse to drug use while attempting to maintain abstinence. There is limited research examining the consequences of long-term EtOH and NIC co-abuse. OBJECTIVES: The current experiments determined the enduring effects of chronic EtOH, NIC, or EtOH + NIC intake on the reinforcing properties of NIC and glutamate (GLU) activity within the mesocorticolimbic (MCL) system. METHODS: Alcohol-preferring (P) rats self-administered EtOH, Sacc + NIC, or EtOH + NIC combined for 10 weeks. The reinforcing properties of 0.1-3.0 ÎĽM NIC within the nucleus accumbens shell (AcbSh) were assessed following a 2-3-week drug-free period using intracranial self-administration (ICSA) procedures. The effects of EtOH, Sacc, Sacc + NIC, or EtOH + NIC intake on extracellular levels and clearance of glutamate (GLU) in the medial prefrontal cortex (mPFC) were also determined. RESULTS: Binge intake of EtOH (96-100 mg%) and NIC (21-27 mg/mL) were attained. All groups of P rats self-infused 3.0 ÎĽM NIC directly into the AcbSh, whereas only animals in the EtOH + NIC co-abuse group self-infused the 0.3 and 1.0 ÎĽM NIC concentrations. Additionally, self-administration of EtOH + NIC, but not EtOH, Sacc or Sacc + NIC, resulted in enduring increases in basal extracellular GLU levels in the mPFC. CONCLUSIONS: Overall, the co-abuse of EtOH + NIC produced enduring neuronal alterations within the MCL which enhanced the rewarding properties of NIC in the AcbSh and elevated extracellular GLU levels within the mPFC

    Reinforcing properties and neurochemical response of ethanol within the posterior ventral tegmental area are enhanced in adulthood by periadolescent ethanol consumption

    Get PDF
    Alcohol drinking during adolescence is associated with increased alcohol drinking and alcohol dependence in adulthood. Research examining the biologic consequences of adolescent ethanol (EtOH) consumption on the response to EtOH in the neurocircuitry shown to regulate drug reinforcement is limited. The experiments were designed to determine the effects of periadolescent alcohol drinking on the reinforcing properties of EtOH within the posterior ventral tegmental area (pVTA) and the ability of EtOH microinjected into the pVTA to stimulate dopamine (DA) release in the nucleus accumbens shell (AcbSh). EtOH access (24-hour free-choice) by alcohol-preferring rats occurred during postnatal days (PND) 30-60. Animals were tested for their response to EtOH after PND 85. Intracranial self-administration techniques were performed to assess EtOH self-infusion into the pVTA. In the second experiment, rats received microinjections of EtOH into the pVTA, and dialysis samples were collected from the AcbSh. The results indicate that in rats that consumed EtOH during adolescence, the pVTA was more sensitive to the reinforcing effects of EtOH (a lower concentration of EtOH supported self-administration) and the ability of EtOH microinjected into the pVTA to stimulate DA release in the AcbSh was enhanced (sensitivity and magnitude). The data indicate that EtOH consumption during adolescence altered the mesolimbic DA system to be more sensitive and responsive to EtOH. This increase in the response to EtOH within the mesolimbic DA during adulthood could be part of biologic sequelae that are the basis for the deleterious effects of adolescent alcohol consumption on the rate of alcoholism during adulthood

    Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine

    Get PDF
    The rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA

    Selective breeding for high alcohol consumption and response to nicotine: locomotor activity, dopaminergic in the mesolimbic system, and innate genetic differences in male and female alcohol-preferring, non-preferring, and replicate lines of high-alcohol drinking and low-alcohol drinking rats

    Get PDF
    Rationale There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. Objectives The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. Methods The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. Results The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and β4. Conclusion Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets

    Linking goniometer measurements to hyperspectral and multi-sensor imagery for retrieval of beach properties and coastal characterization

    Get PDF
    In June 2011, a multi-sensor airborne remote sensing campaign was flown at the Virginia Coast Reserve Long Term Ecological Research site with coordinated ground and water calibration and validation (cal/val) measurements. Remote sensing imagery acquired during the ten day exercise included hyperspectral imagery (CASI-1500), topographic LiDAR, and thermal infra-red imagery, all simultaneously from the same aircraft. Airborne synthetic aperture radar (SAR) data acquisition for a smaller subset of sites occurred in September 2011 (VCR\u2711). Focus areas for VCR\u2711 were properties of beaches and tidal flats and barrier island vegetation and, in the water column, shallow water bathymetry. On land, cal/val emphasized tidal flat and beach grain size distributions, density, moisture content, and other geotechnical properties such as shear and bearing strength (dynamic deflection modulus), which were related to hyperspectral BRDF measurements taken with the new NRL Goniometer for Outdoor Portable Hyperspectral Earth Reflectance (GOPHER). This builds on our earlier work at this site in 2007 related to beach properties and shallow water bathymetry. A priority for VCR\u2711 was to collect and model relationships between hyperspectral imagery, acquired from the aircraft at a variety of different phase angles, and geotechnical properties of beaches and tidal flats. One aspect of this effort was a demonstration that sand density differences are observable and consistent in reflectance spectra from GOPHER data, in CASI hyperspectral imagery, as well as in hyperspectral goniometer measurements conducted in our laboratory after VCR\u2711

    Hypothalamic orexin’s role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model

    Get PDF
    Distressing symptoms such as hot flashes and sleep disturbances affect over 70% of women approaching menopause for an average of 4-7 years, and recent large cohort studies have shown that anxiety and stress are strongly associated with more severe and persistent hot flashes and can induce hot flashes. Although high estrogen doses alleviate symptoms, extended use increases health risks, and current non-hormonal therapies are marginally better than placebo. The lack of effective non-hormonal treatments is largely due to the limited understanding of the mechanisms that underlie menopausal symptoms. One mechanistic pathway that has not been explored is the wake-promoting orexin neuropeptide system. Orexin is exclusively synthesized in the estrogen receptor rich perifornical hypothalamic region, and has an emerging role in anxiety and thermoregulation. In female rodents, estrogens tonically inhibit expression of orexin, and estrogen replacement normalizes severely elevated central orexin levels in postmenopausal women. Using an ovariectomy menopause model, we demonstrated that an anxiogenic compound elicited exacerbated hot flash-associated increases in tail skin temperature (TST, that is blocked with estrogen), and cellular responses in orexin neurons and efferent targets. Furthermore, systemic administration of centrally active, selective orexin 1 or 2 and dual receptor antagonists attenuated or blocked TST responses, respectively. This included the reformulated Suvorexant, which was recently FDA-approved for treating insomnia. Collectively, our data support the hypothesis that dramatic loss of estrogen tone during menopausal states leads to a hyperactive orexin system that contributes to symptoms such as anxiety, insomnia, and more severe hot flashes. Additionally, orexin receptor antagonists may represent a novel non-hormonal therapy for treating menopausal symptoms, with minimal side effects

    Selective Breeding for High Alcohol Preference is Associated with Increased Sensitivity to Cannabinoid Reward within the Nucleus Accumbens Shell

    Get PDF
    Rationale: The rate of cannabinoid intake by those with alcohol use disorder (AUD) exceeds that of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated to be predicated upon both a common predisposing genetic factor and the interaction of the drugs within the organism. The current experiments examined the effects of cannabinoids in an animal model of AUD. Objectives: The present study assessed the reinforcing properties of a cannabinoid receptor 1 (CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female Wistar and alcohol-preferring (P) rats. Methods: Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant box equipped with an 'active lever' (fixed ratio 1; FR1) that caused the delivery of the infusate and an 'inactive lever' that did not. Subjects were arbitrarily assigned to one of seven groups that self-administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100 nl of O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition dose of infusate during session 7 as reinstatement. Results: The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats. Conclusions: Overall, the data indicate selective breeding for high alcohol preference has produced rats divergent in response to cannabinoids within the brain reward pathway. The data support the hypothesis that there can be common genetic factors influencing drug addiction

    Conditioned stimuli affect ethanol-seeking by female alcohol-preferring (P) rats: the role of repeated-deprivations, cue-pretreatment, and cue-temporal intervals

    Get PDF
    Rationale: Evidence indicates drug-paired stimuli can evoke drug-craving leading to drug-seeking and repeated relapse periods can influence drug-seeking behaviors. Objectives: The present study examined (1) the effect of an interaction between repeated deprivation cycles and excitatory conditioning stimuli (CS +) on ethanol (EtOH)-seeking; (2) the effects of EtOH-paired cue-exposure in a non-drug paired environment on subsequent conditioning in a drug-paired environment; and (3) the temporal effects of conditioned cues on subsequent EtOH-seeking. Methods: Adult female alcohol-preferring (P) rats were exposed to three conditioned odor cues; CS+ associated with EtOH self-administration, CS- associated with the absence of EtOH (extinction training), and a neutral stimulus (CS0) presented in a neutral non drug-paired environment. The rats underwent 4 deprivation cycles or were Non-Deprived, following extinction they were maintained in a home cage for an EtOH-free period, and then exposed to no cue, CS+, CS-, or CS0 to assess the effect of the conditioned cues on EtOH-seeking behavior. Results: Repeated deprivations enhanced and prolonged the duration of CS+ effects on EtOH-seeking. Presentation of the CS- in a non-drug paired environment blocked the ability of a CS+ to enhance EtOH-seeking in a drug-paired environment. Presentation of the CS+ or CS- in a non-drug paired environment 2 or 4-hours earlier significantly altered EtOH-seeking. Conclusion: Results indicated an interaction between repeated deprivation cycles and CS+ resulted in a potentiation of CS+ evoked EtOH-seeking. In addition, a CS- may have therapeutic potential by providing prophylactic protection against relapse behavior in the presence of cues in the drug-using environment
    • …
    corecore