139 research outputs found

    Using Generalized Procrustes Analysis (GPA) for normalization of cDNA microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normalization is essential in dual-labelled microarray data analysis to remove non-biological variations and systematic biases. Many normalization methods have been used to remove such biases within slides (Global, Lowess) and across slides (Scale, Quantile and VSN). However, all these popular approaches have critical assumptions about data distribution, which is often not valid in practice.</p> <p>Results</p> <p>In this study, we propose a novel assumption-free normalization method based on the Generalized Procrustes Analysis (GPA) algorithm. Using experimental and simulated normal microarray data and boutique array data, we systemically evaluate the ability of the GPA method in normalization compared with six other popular normalization methods including Global, Lowess, Scale, Quantile, VSN, and one boutique array-specific housekeeping gene method. The assessment of these methods is based on three different empirical criteria: across-slide variability, the Kolmogorov-Smirnov (K-S) statistic and the mean square error (MSE). Compared with other methods, the GPA method performs effectively and consistently better in reducing across-slide variability and removing systematic bias.</p> <p>Conclusion</p> <p>The GPA method is an effective normalization approach for microarray data analysis. In particular, it is free from the statistical and biological assumptions inherent in other normalization methods that are often difficult to validate. Therefore, the GPA method has a major advantage in that it can be applied to diverse types of array sets, especially to the boutique array where the majority of genes may be differentially expressed.</p

    Assessment of Estrogenic Endocrine-Disrupting Chemical Actions in the Brain Using in Vivo Somatic Gene Transfer

    Get PDF
    Estrogenic endocrine-disrupting chemicals abnormally stimulate vitellogenin gene expression and production in the liver of many male aquatic vertebrates. However, very few studies demonstrate the effects of estrogenic pollutants on brain function. We have used polyethylenimine-mediated in vivo somatic gene transfer to introduce an estrogen response element–thymidine kinase–luciferase (ERE-TK-LUC) construct into the brain. To determine if waterborne estrogenic chemicals modulate gene transcription in the brain, we injected the estrogen-sensitive construct into the brains of Nieuwkoop-Faber stage 54 Xenopus laevis tadpoles. Both ethinylestradiol (EE2; p < 0.002) and bisphenol A (BPA; p < 0.03) increased luciferase activity by 1.9- and 1.5-fold, respectively. In contrast, low physiologic levels of 17β-estradiol had no effect (p > 0.05). The mixed antagonist/agonist tamoxifen was estrogenic in vivo and increased (p < 0.003) luciferase activity in the tadpole brain by 2.3-fold. There have been no previous reports of somatic gene transfer to the fish brain; therefore, it was necessary to optimize injection and transfection conditions for the adult goldfish (Carassius auratus). Following third brain ventricle injection of cytomegalovirus (CMV)-green fluorescent protein or CMV-LUC gene constructs, we established that cells in the telencephalon and optic tectum are transfected. Optimal transfections were achieved with 1 μg DNA complexed with 18 nmol 22 kDa polyethylenimine 4 days after brain injections. Exposure to EE2 increased brain luciferase activity by 2-fold in males (p < 0.05) but not in females. Activation of an ERE-dependent luciferase reporter gene in both tadpole and fish indicates that waterborne estrogens can directly modulate transcription of estrogen-responsive genes in the brain. We provide a method adaptable to aquatic organisms to study the direct regulation of estrogen-responsive genes in vivo

    Mutation of brain aromatase disrupts spawning behavior and reproductive health in female zebrafish

    Get PDF
    Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into bioactive estrogens, and hence is in a pivotal position to mediate reproduction and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that is highly expressed in granulosa and Leydig cells in the gonads with critical function in sexual differentiation of the ovary, and cyp19a1b that is highly expressed in radial glial cells in the brain with unknown roles in reproduction. Cyp19a1-/- mutant zebrafish lines were used to investigate the importance of the cyp19a1 paralogs for spawning behavior and offspring survival and early development. Mutation of cyp19a1b was found to increase the latency to the first oviposition in females. Mutation of cyp19a1b in females also increased the number of eggs spawned; however, significantly more progeny died during early development resulting in no net increase in female fecundity. This finding suggests a higher metabolic cost of reproduction in cyp19a1b-/- mutant females. In males, the combined mutation of both cyp19a1 paralogs resulted in significantly lower progeny survival rates, indicating a critical function of cyp19a1 during early larval development. These data establish the specific importance of cyp19a1b for female spawning behavior and the importance of the cyp19a1 paralogs for early larval survival

    Developmental fluoxetine exposure in zebrafish reduces offspring basal cortisol concentration via life stage-dependent maternal transmission

    Get PDF
    Fluoxetine (FLX) is a pharmaceutical used to treat affective disorders in humans, but as environmental contaminant also affects inadvertently exposed fish in urban watersheds. In humans and fish, acute FLX treatment and exposure are linked to endocrine disruption, including effects on the reproductive and stress axes. Using the zebrafish model, we build on the recent finding that developmental FLX exposure reduced cortisol production across generations, to determine possible parental and/or life-stage-dependent (age and/or breeding experience) contributions to this phenotype. Specifically, we combined control and developmentally FLX-exposed animals of both sexes (F0) into four distinct breeding groups mated at 5 and 9 months, and measured offspring (F1) basal cortisol at 12 dpf. Basal cortisol was lower in F1 descended from developmentally FLX-exposed F0 females bred at 5, but not 9 months, revealing a maternal, life-stage dependent effect. To investigate potential molecular contributions to this phenotype, we profiled maternally deposited transcripts involved in endocrine stress axis development and regulation, epigenetic (de novo DNA methyltransferases) and post-transcriptional (miRNA pathway components and specific miRNAs) regulation of gene expression in unfertilized eggs. Maternal FLX exposure resulted in decreased transcript abundance of glucocorticoid receptor, dnmt3 paralogues and miRNA pathway components in eggs collected at 5 months, and increased transcript abundance of miRNA pathway components at 9 months. Specific miRNAs predicted to target stress axis transcripts decreased (miR-740) or increased (miR-26, miR-30d, miR-92a, miR-103) in eggs collected from FLX females at 5 months. Increased abundance of miRNA-30d and miRNA-92a persisted in eggs collected from FLX females at 9 months. Clustering and principal component analyses of egg transcript profiles separated eggs collected from FLX-females at 5 months from other groups, suggesting that oocyte molecular signatures, and miRNAs in particular, may serve as predictive tools for the offspring phenotype of reduced basal cortisol in response to maternal FLX exposure

    Hormonal induction of spawning in 4 species of frogs by coinjection with a gonadotropin-releasing hormone agonist and a dopamine antagonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that many anurans do not reproduce easily in captivity. Some methods are based on administration of mammalian hormones such as human chorionic gonadotropin, which are not effective in many frogs. There is a need for simple, cost-effective alternative techniques to induce spawning.</p> <p>Methods</p> <p>Our new method is based on the injection of a combination of a gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. We have named this formulation AMPHIPLEX, which is derived from the combination of the words amphibian and amplexus. This name refers to the specific reproductive behavior of frogs when the male mounts and clasps the female to induce ovulation and to fertilize the eggs as they are laid.</p> <p>Results</p> <p>We describe the use of the method and demonstrate its applicability for captive breeding in 3 different anuran families. We tested several combinations of GnRH agonists with dopamine antagonists using Lithobates pipiens. The combination of des-Gly<sup>10</sup>, D-Ala<sup>6</sup>, Pro-LHRH (0.4 microrams/g body weight) and metoclopramide (10 micrograms/g BWt. MET) was most effective. It was used in-season, after short-term captivity and in frogs artificially hibernated under laboratory conditions. The AMPHIPLEX method was also effective in 3 Argentinian frogs, <it>Ceratophrys ornata</it>, <it>Ceratophrys cranwelli</it> and <it>Odontophrynus americanus</it>.</p> <p>Conclusion</p> <p>Our approach offers some advantages over other hormonally-based techniques. Both sexes are injected only once and at the same time, reducing handling stress. AMPHIPLEX is a new reproductive management tool for captive breeding in Anura.</p

    Amino acid neurotransmitters and dopamine in brain and pituitary of the goldfish: involvement in the regulation of gonadotropin secretion

    Get PDF
    Abstract: An isocratic high-performance liquid chromatographic technique was developed to measure levels of yaminobutyric acid (GABA), glutamate, and taurine in the brain and pituitary of goldfish. Accuracy of this procedure for quantification of these compounds was established by evaluating anesthetic and postmortem effects and by selectively manipulating GABA concentrations by intraperitoneal administration of the glutamic acid decarboxylase (GAD) inhibitor 3-mercaptopropionic acid or the GABA transaminase inhibitor y-vinyl GABA. The technique provided a simple, rapid, and reliable method for evaluating the concentrations of these amino acids without the use of complex gradient chromatographic systems. To investigate the relationship between neurotransmitter amino acids and the control of pituitary secretion of gonadotropin, the effects of injection of taurine, GABA, or monosodium glutamate on GABA, glutamate, taurine, and, in some instances, monoamine concentrations in the brain and pituitary were evaluated and related to serum gonadotropin levels. Injection of taurine caused an elevation in serum gonadotropin concentrations. In addition, injection of the taurine precursor hypotaurine but not the taurine cataboiite isetheonic acid elevated serum gonadotropin levels. Intracerebroventricular injection of either GABA or taurine also elevated serum gonadotropin concentrations. Pretreatment of recrudescent fish with a-methyl-p-tyrosine reduced pituitary dopamine concentrations and also potentiated the serum gonadotropin response to taurine. Injection of monosodium glutamate caused an increase of glutamate content in the pituitary at 24 h; this was followed by a decrease at 72 h after administration. Pituitary GABA, taurine, and dopamine concentrations underwent a transient depletion after monosodium glutamate administration, and this was associated with an elevation of serum gonadotropin content. The increase in serum gonadotropin concentrations in response to a gonadotropin-releasing hormone analogue was potentiated by pretreatment with monosodium glutamate. This article demonstrates that procedures causing elevation in GABA and taurine concentrations stimulate gonadotropin release in a teleost fish. Key Words: y-Aminobutyric acidGlutamate-TaurineDopamine-Gonadotropin-Goldfish. Sloley B. D. et al. Amino acid neurotransmitters and dopamine in brain and pituitary of the goldfish: Involvement in the regulation of gonadotropin secretion. J. Neurochem. 58,2254Neurochem. 58, -2262

    Defining Global Neuroendocrine Gene Expression Patterns Associated with Reproductive Seasonality in Fish

    Get PDF
    Many vertebrates, including the goldfish, exhibit seasonal reproductive rhythms, which are a result of interactions between external environmental stimuli and internal endocrine systems in the hypothalamo-pituitary-gonadal axis. While it is long believed that differential expression of neuroendocrine genes contributes to establishing seasonal reproductive rhythms, no systems-level investigation has yet been conducted. gamma2 receptor, calmodulin, and aromatase b by independent samplings of goldfish brains from six seasonal time points and real-time PCR assays.Using both theoretical and experimental strategies, we report for the first time global gene expression patterns throughout a breeding season which may account for dynamic neuroendocrine regulation of seasonal reproductive development

    Simultaneous extraction and detection of peptides, steroids, and proteins in small tissue samples

    Get PDF
    The detection and quantification of hormones are important to assess the reproductive and stress status of experimental models and for the diagnosis of diseases in human and veterinary clinics. Traditionally, steroid, peptide, and protein hormones are analyzed in individual experiments using different extraction methodologies. With the new advancement on HPLC sorbents, the simultaneous measurement of hormones from different categories becomes possible. In this study, we present a novel sample processing strategy for the simultaneous extraction and detection of peptides, steroids, and proteins using high-resolution liquid chromatography tandem mass spectrometry. We demonstrate the sensitivity of our method for small tissues by acquiring data from brain, pituitary gland, and gonads of single zebrafish samples. This approach promises to shed light on the hormonal pathways and their interrelationships, providing knowledge on the integration of hormone systems
    corecore