17 research outputs found

    Highly Efficient Autologous HIV-1 Isolation by Coculturing Macrophage With Enriched CD4+ T Cells From HIV-1 Patients

    Get PDF
    We described a novel HIV autologous isolation method based in coculturing macrophages and CD4+T-cell-enriched fractions from peripheral blood collected from antiretroviral-treated (ART) HIV patients. This method allows the isolation of high viral titers of autologous viruses, over 1010HIV RNA copies/ml, and reduces the time required to produce necessary amounts for virus for use as antigens presented by monocyte-derived myeloid cells in HIV therapeutic vaccine approaches. By applying these high titer and autologous virus produced in the patient-derived cells, we intended to elicit a boost of the immunological system response in HIV therapeutic vaccines in clinical trials.This study was partially supported by grants from the Spanish Ministry of Economy (MINECO) (grants: SAF2015-66193-R, SAF-2017-88089-R, RTI2018-096309-B-I00); the Fondo Europeo para el Desarrollo Regional (FEDER); the SPANISH AIDS Research Network RD16/0025/0002 and RD16/0025/0014-ISCIII-FEDER (RIS); the Fondo de Investigación Sanitaria (FIS) PI12/01247 and PI20/00676; and HIVACAT program and the CERCA Programme/Generalitat de Catalunya SGR 615 and SGR 653. The project leading to these results has received funding from “la Caixa” Foundation under agreement. This study was also supported in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract Nos. HHSN261200800001E and 75N91019D00024.S

    Quantitation of HLA Class II Protein Incorporated into Human Immunodeficiency Type 1 Virions Purified by Anti-CD45 Immunoaffinity Depletion of Microvesicles

    No full text
    Among the many host cell-derived proteins found in human immunodeficiency virus type 1 (HIV-1), HLA class II (HLA-II) appears to be selectively incorporated onto virions and may contribute to mechanisms of indirect imunopathogenesis in HIV infection and AIDS. However, the amount of HLA-II on the surface of HIV-1 particles has not been reliably determined due to contamination of virus preparations by microvesicles containing host cell proteins, including HLA-II. Even rigorous sucrose density centrifugation is unable to completely separate HIV-1 from microvesicles. CD45, a leukocyte integral membrane protein, is found on microvesicles, yet appears to be excluded from HIV-1 particles. Exploiting this observation, we have developed a CD45-based immunoaffinity depletion method for removing CD45-containing microvesicles that yields highly purified preparations of virions. Examination of CD45-depleted HIV-1(MN) by high-pressure liquid chromatography, protein sequencing, and amino acid analyses determined a molar ratio of HLA-II to Gag of 0.04 to 0.05 in the purified virions, corresponding to an estimated average of 50 to 63 native HLA-II complexes (i.e., a dimer of α and ÎČ heterodimers) per virion. These values are approximately 5- to 10-fold lower than those previously determined for other virion preparations that contained microvesicles. Our observations demonstrate the utility of CD45 immunoaffinity-based approaches for producing highly purified retrovirus preparations for applications that would benefit from the use of virus that is essentially free of microvesicles

    Antifibrotic Therapy in Simian Immunodeficiency Virus Infection Preserves CD4\u3csup\u3e+\u3c/sup\u3e T-Cell Populations and Improves Immune Reconstitution With Antiretroviral Therapy

    Get PDF
    Even with prolonged antiretroviral therapy (ART), many human immunodeficiency virus-infected individuals have CD4+ T cells/ÎŒL, and CD4+ T cells in lymphoid tissues remain severely depleted, due in part to fibrosis of the paracortical T-cell zone (TZ) that impairs homeostatic mechanisms required for T-cell survival.We therefore used antifibrotic therapy in simian immunodeficiency virus-infected rhesus macaques to determine whether decreased TZ fibrosis would improve reconstitution of peripheral and lymphoid CD4+ T cells. Treatment with the antifibrotic drug pirfenidone preserved TZ architecture and was associated with significantly larger populations of CD4+ T cells in peripheral blood and lymphoid tissues. Combining pirfenidone with an ART regimen was associated with greater preservation of CD4+ T cells than ART alone and was also associated with higher pirfenidone concentrations. These data support a potential role for antifibrotic drug treatment as adjunctive therapy with ART to improve immune reconstitution

    Development of a cAdVax-Based Bivalent Ebola Virus Vaccine That Induces Immune Responses against both the Sudan and Zaire Species of Ebola Virus

    No full text
    Ebola virus (EBOV) causes a severe hemorrhagic fever for which there are currently no vaccines or effective treatments. While lethal human outbreaks have so far been restricted to sub-Saharan Africa, the potential exploitation of EBOV as a biological weapon cannot be ignored. Two species of EBOV, Sudan ebolavirus (SEBOV) and Zaire ebolavirus (ZEBOV), have been responsible for all of the deadly human outbreaks resulting from this virus. Therefore, it is important to develop a vaccine that can prevent infection by both lethal species. Here, we describe the bivalent cAdVaxE(GPs/z) vaccine, which includes the SEBOV glycoprotein (GP) and ZEBOV GP genes together in a single complex adenovirus-based vaccine (cAdVax) vector. Vaccination of mice with the bivalent cAdVaxE(GPs/z) vaccine led to efficient induction of EBOV-specific antibody and cell-mediated immune responses to both species of EBOV. In addition, the cAdVax technology demonstrated induction of a 100% protective immune response in mice, as all vaccinated C57BL/6 and BALB/c mice survived challenge with a lethal dose of ZEBOV (30,000 times the 50% lethal dose). This study demonstrates the potential efficacy of a bivalent EBOV vaccine based on a cAdVax vaccine vector design

    Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages

    No full text
    Human immunodeficiency virus type 1 (HIV-1) infects CD4(+) T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages

    Cytotoxic capacity of SIV-specific CD8(+) T cells against primary autologous targets correlates with immune control in SIV-infected rhesus macaques.

    Get PDF
    Although the study of non-human primates has resulted in important advances for understanding HIV-specific immunity, a clear correlate of immune control over simian immunodeficiency virus (SIV) replication has not been found to date. In this study, CD8(+) T-cell cytotoxic capacity was examined to determine whether this function is a correlate of immune control in the rhesus macaque (RM) SIV infection model as has been suggested in chronic HIV infection. SIVmac251-infected human reverse transcriptase (hTERT)-transduced CD4(+) T-cell clone targets were co-incubated with autologous macaque effector cells to measure infected CD4(+) T-cell elimination (ICE). Twenty-three SIV-infected rhesus macaques with widely varying plasma viral RNA levels were evaluated in a blinded fashion. Nineteen of 23 subjects (83%) were correctly classified as long-term nonprogressor/elite controller (LTNP/EC), slow progressor, progressor or SIV-negative rhesus macaques based on measurements of ICE (weighted Kappa 0.75). LTNP/EC had higher median ICE than progressors (67.3% [22.0-91.7%] vs. 23.7% [0.0-58.0%], p = 0.002). In addition, significant correlations between ICE and viral load (r = -0.57, p = 0.01), and between granzyme B delivery and ICE (r = 0.89, p<0.001) were observed. Furthermore, the CD8(+) T cells of LTNP/EC exhibited higher per-cell cytotoxic capacity than those of progressors (p = 0.004). These findings support that greater lytic granule loading of virus-specific CD8(+) T cells and efficient delivery of active granzyme B to SIV-infected targets are associated with superior control of SIV infection in rhesus macaques, consistent with observations of HIV infection in humans. Therefore, such measurements appear to represent a correlate of control of viral replication in chronic SIV infection and their role as predictors of immunologic control in the vaccine setting should be evaluated

    Proteomic and Biochemical Analysis of Purified Human Immunodeficiency Virus Type 1 Produced from Infected Monocyte-Derived Macrophages

    No full text
    Human immunodeficiency virus type 1 (HIV-1) infects CD4(+) T lymphocytes and monocytes/macrophages, incorporating host proteins in the process of assembly and budding. Analysis of the host cell proteins incorporated into virions can provide insights into viral biology. We characterized proteins in highly purified HIV-1 virions produced from human monocyte-derived macrophages (MDM), within which virus buds predominantly into intracytoplasmic vesicles, in contrast to the plasmalemmal budding of HIV-1 typically seen with infected T cells. Liquid chromatography-linked tandem mass spectrometry of highly purified virions identified many cellular proteins, including 33 previously described proteins in HIV-1 preparations from other cell types. Proteins involved in many different cellular structures and functions were present, including those from the cytoskeleton, adhesion, signaling, intracellular trafficking, chaperone, metabolic, ubiquitin/proteasomal, and immune response systems. We also identified annexins, annexin-binding proteins, Rab proteins, and other proteins involved in membrane organization, vesicular trafficking, and late endosomal function, as well as apolipoprotein E, which participates in cholesterol transport, immunoregulation, and modulation of cell growth and differentiation. Several tetraspanins, markers of the late endosomal compartment, were also identified. MDM-derived HIV contained 26 of 37 proteins previously found in exosomes, consistent with the idea that HIV uses the late endosome/multivesicular body pathway during virion budding from macrophages

    SIV-specific CD8<sup>+</sup> T cells from LTNP/EC mediate greater lysis of SIV-infected CD4<sup>+</sup> T-cell targets compared with progressors.

    No full text
    <p>GrB target cell activity (<b>A</b>) and infected CD4 elimination (ICE) (<b>B</b>) are shown for LTNP/EC (n = 10, GrB target cell activity; n = 11, ICE) and progressors (n = 11). Horizontal bars represent the median values. <b>C.</b> Correlation between ICE and GrB target cell activity (n = 22) was determined by the Spearman rank method. Red, blue and cyan dots represent LTNP/EC, progressors and one SIV-uninfected animal, respectively.</p

    SIV-specific CD8<sup>+</sup> T cells of LTNP/EC mediate greater per-cell killing of SIV-infected targets than those of progressors, which is not simply due to higher true E∶T ratios.

    No full text
    <p><b>A.</b> The true effector to target (E∶T) ratios, determined by measurements of IFN-Îł-secreting CD8<sup>+</sup> T-cell effectors and p27-expressing CD4<sup>+</sup> T-cell targets, respectively, as described in the Methods and shown in the <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003195#ppat.1003195.s001" target="_blank">Figure S1</a> and <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003195#ppat.1003195.s002" target="_blank">Table S1</a>, were compared between LTNP/EC (n = 11) and progressors (n = 11). Horizontal bars represent the median values. <b>B, C.</b> GrB target cell activity (<b>B</b>) or ICE (<b>C</b>) responses plotted against the true E∶T ratios are shown for LTNP/EC (n = 10, GrB target cell activity; n = 11, ICE) and progressors (n = 11). GrB target cell activity is shown after subtraction of background. The response curves were analyzed by regressing ICE and GrB on log true E∶T ratios using analysis of covariance. The standard two-tailed t test from regression analysis was used to compare estimated GrB target cell activity and ICE of LTNP/EC with that of progressors at the 5.8 E∶T ratio, the median of the combined E∶T ranges of both groups.</p
    corecore