823 research outputs found

    Recognition of Regional Water Table Patterns for Estimating Recharge Rates in Shallow Aquifers

    Get PDF
    We propose a new method for groundwater recharge rate estimation in regions with stream-aquifer interactions, at a linear scale on the order of 10 km and more. The method is based on visual identification and quantification of classically recognized water table contour patterns. Simple quantitative analysis of these patterns can be done manually from measurements on a map, or from more complex GIS data extraction and curve fitting. Recharge rate is then estimated from the groundwater table contour parameters, streambed gradients, and aquifer transmissivity using an analytical model for groundwater flow between parallel perennial streams. Recharge estimates were obtained in three regions (areas of 1500, 2200, and 3300 km2) using available water table maps produced by different methods at different times in the area of High Plains Aquifer in Nebraska. One region is located in the largely undeveloped Nebraska Sand Hills area, while the other two regions are located at a transition zone from Sand Hills to loess-covered area and include areas where groundwater is used for irrigation. Obtained recharge rates are consistent with other independent estimates. The approach is useful and robust diagnostic tool for preliminary estimates of recharge rates, evaluation of the quality of groundwater table maps, identification of priority areas for further aquifer characterization and expansion of groundwater monitoring networks prior to using more detailed methods. Includes supplemental materials

    Source and magnitude of error in an inexpensive image-based water level measurement system

    Get PDF
    Recent technological advances have opened the possibility to use webcams and images as part of the environmental monitoring arsenal. The potential sources and magnitude of uncertainties inherent to an image-based water level measurement system are evaluated in an experimental design in the laboratory. Sources of error investigated include image resolution, lighting effects, perspective, lens distortion and water meniscus. Image resolution and meniscus were found to weigh the most in the overall uncertainty of this system. Image distortion, although largely taken into account by the software developed, may also significantly add to uncertainty. Results suggest that ‘‘flat’’ images with little distortion are preferable. After correction for the water meniscus, images captured with a camera (12 mm or 16 mm focal lengths) positioned 4–7 m from the water level edge have the potential to yield water level measurements within ±3 mm when using this technique

    Geostatistical features of streambed vertical hydraulic conductivities in Frenchman Creek Watershed in Western Nebraska

    Get PDF
    This study evaluated the spatial variability of streambed vertical hydraulic conductivity (Kv) in different stream morphologies in the Frenchman Creek Watershed, Western Nebraska, using different variogram models. Streambed Kv values were determined in situ using permeameter tests at 10 sites in Frenchman, Stinking Water and Spring Creeks during the dry season at baseflow conditions. Measurements were taken both in straight and meandering stream channels during a 5 day period at similar flow conditions. Each test site comprised of at least three transects and each transect comprised of at least three Kv measurements. Linear, Gaussian, exponential and spherical variogram models were used with Kriging gridding method for the 10 sites. As a goodness-of-fit statistic for the variogram models, cross-validation results showed differences in the median absolute deviation and the standard deviation of the cross-validation residuals. Results show that using the geometric means of the 10 sites for gridding performs better than using either all the Kv values from the 93 permeameter tests or 10 Kv values from the middle transects and centre permeameters. Incorporating both the spatial variability and the uncertainty involved in the measurement at a reach segment can yield more accurate grid results that can be useful in calibrating Kv at watershed or sub-watershed scales in distributed hydrological models

    Groundwater transit time distribution and mean from streambed sampling in an agricultural coastal plain watershed, North Carolina, USA

    Get PDF
    We measured groundwater apparent age (s) and seepage rate (v) in a sandy streambed using point-scale sampling and seepage blankets (a novel seepage meter). We found very similar MTT estimates from streambed point sampling in a 58 m reach (29 years) and a 2.5 km reach (31 years). The TTD for groundwater discharging to the stream was best fit by a gamma distribution model and was very similar for streambed point sampling in both reaches. Between adjacent point-scale and seepage blanket samples, water from the seepage blankets was generally younger, largely because blanket samples contained a fraction of ‘‘young’’ stream water. Correcting blanket data for the stream water fraction brought s estimates for most blanket samples closer to those for adjacent point samples. The MTT estimates from corrected blanket data were in good agreement with those from sampling streambed points adjacent to the blankets. Collectively, agreement among age-dating tracers, general accord between tracer data and piston-flow model curves, and large groundwater age gradients in the streambed, suggested that the piston flow apparent ages were reasonable estimates of the groundwater transit times for most samples. Overall, our results from two field campaigns suggest that groundwater collected in the streambed can provide reasonable estimates of apparent age of groundwater discharge, and that MTT can be determined from different agedating tracers and by sampling with different groundwater collection devices. Coupled streambed point measurements of groundwater age and groundwater seepage rate represent a novel, reproducible, and effective approach to estimating aquifer TTD and MTT

    Needs Assessment: Watershed Science for Water Resources Directors

    Get PDF
    We conducted a needs assessment to identify watershed science training needs for locally elected directors of Nebraska\u27s 23 natural resources districts (NRDs). We interviewed NRD staff and surveyed NRD directors to determine training needs and identify relevant topics and preferred delivery formats. We found that training would be valuable; however, directors are busy, meaning that opportunities for training are limited. Additionally, we learned that directors rely on printed material and other NRD personnel for watershed science information. Therefore, web-based information may be most useful if designed for collaborative learning through hybrid delivery during regular NRD activities. Our findings are relevant to current and future regulatory systems reliant on locally elected boards

    Evaluation of selected watershed characteristics to identify best management practices to reduce Nebraskan nitrate loads from Nebraska to the Mississippi/Atchafalaya River basin

    Get PDF
    Nebraskan streams contribute excess nitrogen to the Mississippi/Atchafalaya River Basin and Gulf of Mexico, which results in major water-quality impairments. Reducing the amount of nitrogen (N) exported in these streams requires the use of best management practices (BMPs) within the landscape. However, proper BMP utilization has rarely been statistically connected to potential controls of N export within watersheds, particularly precipitation and soil characteristics. In this study, 19 watershed variables were evaluated in five categories (hydrological, physiographic, point sources, land use, and soil properties) to determine the characteristics that influenced variable nitrate nitrogen (NO3-N) concentrations in 17 Nebraska watersheds with known high NO3-N export rates. Each characteristic was derived from publicly-available datasets in an effort to develop a multiregional method. Of the 19 variables evaluated, 10 variables (developed, cropland, herbaceous, forest, excessively- drained soils, precipitation, base-flow index, slope, organic matter and point sources) were identified to statistically influence stream NO3-N concentrations. The 17 watersheds were divided into five subset groups using principal component analysis. Distributions of the 10 watershed variables were then used to determine the most applicable BMPs for NO3-N reductions for each stream subset: excessively drained with high baseflow index (Groups 1 and 2), dominantly row crop land usage with well-drained soils, higher precipitation, and an increased tendency for surface runoff concerns (Group 3), highly developed watersheds (Group 4), and single river dominated by wastewater treatment plant discharge (Group 5). Based on the most influential variables a variety of BMPs were recommended, including N fertilizer application management and accounting for N credit from mineralization and NO3-N in irrigation water (Groups 1 and 2), installation of riparian buffers and wetlands (Group 3), urban BMPs such as bioretention cells and permeable pavement (Group 4), and upgrades to the wastewater treatment plant (Group 5). This study provides an improved technique for facilitating watershed management by linking BMPs directly to the characteristics of each watershed to reduce current nitrate export

    ISOTOPIC COMPOSITION OF GROUNDWATER AND PRECIPITATION IN NEBRASKA, USA

    Get PDF
    Groundwater is vital worldwide for water supply, agriculture and industry. Nearly 60% of all water use in Nebraska is from groundwater. Over 90% of groundwater is used for irrigation in Nebraska, which has the largest area of irrigated land in the United States. Many Nebraskans depend on groundwater for drinking water, both from private wells and municipal wells. The sustainability of groundwater resources is dependent on groundwater recharge. The recharge processes, as well as climatic patterns, influence the stable isotope signatures. Based on weekly samples collected at two monitoring stations managed by the National Atmospheric Deposition Program (NADP), Harvey (2001) and Harvey and Welker (2000) presented an overview of isotopic composition of precipitation in Nebraska. Two stations, located in Mead and North Platte (Figure 1), were monitored from 1992-1994 and 1989-1994, respectively. This data illustrated patterns in the isotopic composition of precipitation, both spatially and seasonally. To better understand the recharge processes, over 789 groundwater samples were collected across Nebraska in 2011 and their isotopic signatures analyzed. While other studies have evaluated isotope ratios (seasonal ratios) (Jasechko et al., 2017; Sanchéz-Murillo and Birkel., 2016), in this study we compared the precipitation signals. The objective of this study was to investigate recharge characteristics based on stable isotope signatures of groundwater and comparisons of the isotopic composition of groundwater and precipitation across Nebraska

    Recharge Seasonality Based on Stable Isotopes: Nongrowing Season Bias Altered by Irrigation in Nebraska

    Get PDF
    The sustainability of groundwater resources for agricultural and domestic use is dependent on both the groundwater recharge rate and groundwater quality. The main purpose of this study was to improve understanding of the timing, or seasonality, of groundwater recharge through the use of stable isotopes. Based on 659 groundwater samples collected from aquifers underlying Natural Resources Districts in Nebraska, the isotopic composition of groundwater (ή 2H, ή 18O) was compared to that of precipitation by (a) mapping the isotopic composition of groundwater samples and (b) mapping a seasonality index for groundwater. Results suggest that for the majority of the state, groundwater recharge has a nongrowing season signature (October – April). However, the isotopic composition of groundwater suggests that in some intensively irrigated areas, human intervention in the water cycle has shifted the recharge signature toward the growing season. In other areas, a different human intervention (diversion of Platte River water for irrigation) has likely produced an apparent but possibly misleading nongrowing season recharge signal because the Platte River water differs isotopically from local precipitation. These results highlight the need for local information even when interpreting isotopic data over larger regions. Understanding the seasonality of recharge can provide insight into the optimal times to apply fertilizer, specifically in highly conductive soils with high leaching potential. In areas with high groundwater nitrate concentrations this information is valuable for protecting the groundwater from further degradation. While previous studies have framed nongrowing season recharge within the context of future climate change, this study also illustrates the importance of understanding how historical human intervention in the water cycle has affected groundwater recharge seasonality and subsequent implications for groundwater recharge and quality

    Assessing Decadal Trends of a Nitrate-Contaminated Shallow Aquifer in Western Nebraska Using Groundwater Isotopes, Age-Dating, and Monitoring

    Get PDF
    Shallow aquifers are prone to nitrate contamination worldwide. In western Nebraska, high groundwater nitrate concentrations ([NO3–]) have resulted in the exploration of new groundwater and nitrogen management regulations in the North Platte Natural Resources District (NPNRD). A small region of NPNRD (“Dutch Flats”) was the focus of intensive groundwater sampling by the United States Geological Survey from 1995 to 1999. Nearly two decades later, notable shifts have occurred in variables related to groundwater recharge and [NO3–], including irrigation methods. The objective of this study was to evaluate how changes in these variables, in part due to regulatory changes, have impacted nitrate-contaminated groundwater in the Dutch Flats area. Groundwater samples were collected to assess changes in: (1) recharge rates; (2) biogeochemical processes; and (3) [NO3–]. Groundwater age increased in 63% of wells and estimated recharge rates were lower for 88% of wells sampled (n = 8). However, mean age and recharge rate estimated in 2016 (19.3 years; R = 0.35 m/year) did not differ significantly from mean values determined in 1998 (15.6 years; R = 0.50 m/year). ή15N-NO3– (n = 14) and dissolved oxygen data indicate no major changes in biogeochemical processes. Available long-term data suggest a downward trend in normalized [NO3–] from 1998 to 2016, and lower [NO3–] was observed in 60% of wells sampled in both years (n = 87), but median values were not significantly different. Collectively, results suggest the groundwater system is responding to environmental variables to a degree that is detectable (e.g., trends in [NO3–]), although more time and/or substantial changes may be required before it is possible to detect significantly different mean recharge

    Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales

    Get PDF
    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3–0.6 m/d) during two 3–4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flowweighted mean nitrate concentrations in groundwater discharge ([NO-3 ]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO-3 ]FWM was 654, 561, and 451 mM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700–1300 mM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer
    • 

    corecore