1,546 research outputs found

    Fabrication Of Integrated Optofluidic Circuits In Chalcogenide Glass Using Femtosecond Laser Direct Writing

    Get PDF
    Femtosecond laser direct writing (FLDW) is a versatile process that uses focused femtosecond pulses to modify the physical structure of a material, which can result in a shift of optical properties such as the linear and nonlinear refractive index. If the photon energy of the femtosecond pulses lies below the material bandgap, nonlinear absorption rather than linear absorption becomes the dominant mechanism of energy transfer to the material. In this manner, a focused femtosecond pulse train can be used to fabricate functional features such as optical waveguides, diffractive optical elements, or micro-fluidic elements within the volume of a transparent medium. In this dissertation, the utility of femtosecond laser processing as a fabrication technique of optical and micro-fluidic elements in chalcogenide glasses is explored. The photo-induced modifications of optical and chemical parameters of new germanium-based Chalcogenide glasses in both bulk and thin-film form are characterized for the first time and the impact of material composition and laser fabrication parameters are discussed. The glasses are found to display an increase in volume, a decrease of the linear optical refractive index, and an increase of the nonlinear refractive index when exposed to femtosecond laser pulses. A model based on avalanche ionization and multi-photon ionization is used to describe the highly nonlinear absorption of laser light in the material and correlate the photo-induced modifications to the electron density generated during irradiation. The magnitude of the induced photomodification is shown to be dependent on laser parameters such as laser dose and repetition rate. The fabrication of microfluidic elements through both direct ablation and the preferential etching of photo-modified regions is also explored. Finally, the integration of both optical elements and fluidic elements fabricated by FLDW into a single substrate is discussed. iv TABLE OF CON

    Oral history interview transcript with Janet Anderson

    Get PDF
    Oral history interview transcript with Janet Anderson. Her topic concerns Title 9 and her work on the Cheney Free Press. Interviewer: Troy Prah

    Terpenoid-Induced Feeding Deterrence and Antennal Response of Honey Bees

    Get PDF
    Multiple interacting stressors negatively affect the survival and productivity of managed honey bee colonies. Pesticides remain a primary concern for beekeepers, as even sublethal exposures can reduce bee immunocompetence, impair navigation, and reduce social communication. Pollinator protection focuses on pesticide application guidelines; however, a more active protection strategy is needed. One possible approach is the use of feeding deterrents that can be delivered as an additive during pesticide application. The goal of this study was to validate a laboratory assay designed to rapidly screen compounds for behavioral changes related to feeding or feeding deterrence. The results of this investigation demonstrated that the synthetic Nasonov pheromone and its terpenoid constituents citral, nerol, and geraniol could alter feeding behavior in a laboratory assay. Additionally, electroantennogram assays revealed that these terpenoids elicited some response in the antennae; however, only a synthetic Nasonov pheromone, citral, and geraniol elicited responses that differed significantly from control and vehicle detections

    Relocation remembered: Perspectives on senior transitions in the living environment

    Get PDF
    The experience of aging may necessitate transitions in living environments, either through adaptations to current residences or relocations to more supportive environments. For over a half century, the study of these transitions has informed the work of researchers, health and mental health providers, policymakers, and municipal planners. In the 1970s and ‘80s, knowledge about these transitions advanced through Lawton & Nahemow’s ecological theory of competence and environmental press, Wiseman’s behavioral model of relocation decision-making, and Litwak & Longino’s developmental perspective on senior migrations. This paper revisits influential theoretical frameworks which contribute to our understanding of senior transitions in living environments. These seminal works are shown to inform recent studies of relocation and gerontology. This paper concludes with a call for a view on housing transitions that reflects the contemporary context

    Sublethal Effects of the Insecticide Pyrifluquinazon on the European Honey Bee (Hymenoptera: Apidae)

    Get PDF
    Pyrifluquinazon (PQZ) is an Insecticide Resistance Action Committee (IRAC) Group 9 insecticide that has recently been registered for use in the United States for control of soft-bodied sucking insect pests. Although it has been classified as practically nontoxic to honey bees, Apis mellifera L. (Hymenoptera: Apidae), based on acute contact bioassays, additional information on sublethal effects of this insecticide on honey bees is lacking. Using a combination of laboratory assays with video movement tracking software and near-field evaluations of colonies foraging in a high-tunnel experiment, we determined that, when fed PQZ at a concentration of 84 mg active ingredient (ai)/liter (= ppm) in sugar water, a reduction in overall movement by the foraging worker bees was observed. However, when provided with honey reserves in the hive, honey bees rejected the PQZ-treated sugar water. These results indicate that, if ingested at levels of 84 mg ai/liter, PQZ could have a negative effect on honey bee behavior; however, honey bee workers appear to be able to detect the presence of PQZ in their food and reject it

    Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, \u3ci\u3eApis mellifera\u3c/i\u3e (L.)

    Get PDF
    Background: The loss of honey bee colonies is a nationally recognized problem that demands attention from both the scientific community and the beekeeping industry. One outstanding threat is the unintended exposure of these pollinators to agricultural pesticides. Anthranilic diamides, such as chlorantraniliprole, are registered for use in stone and pome fruits, vegetables, turf, and grains. There are few publicly available studies that provide an analysis of chlorantraniliprole effects on the survivorship and locomotion activity of beneficial, pollinating insects such as honey bees. The data gathered in this study provide the acute toxicity, 30-day survivorship, and locomotor activity of honey bees exposed to technical-grade chlorantraniliprole and three formulated products with chlorantraniliprole as the active ingredient. Results: Neither the technical-grade nor the formulated products of chlorantraniliprole were acutely toxic to honey bees following 4 or 72h treatments at the tested concentrations. A 4 h treatment of technical-grade and formulated chlorantraniliprole did not significantly affect the 30-day survivorship, although significantly higher mortality was observed after 30 days for bees receiving a 72 h treatment of technical-grade chlorantraniliprole and two formulated products. The locomotion activity, or total walking distance, of bees receiving a 4 h treatment of one chlorantraniliprole formulation was significantly reduced, with these individuals recovering their normal locomotion activity at 48 h post exposure. Conversely, there was observed lethargic behavior and significantly reduced walking distances for bees provided with a 72 h treatment of technical-grade chlorantraniliprole and each formulated product. Conclusion: This study provides evidence for the effect of long-term exposure of chlorantraniliprole on the survivorship and locomotor activity of honey bees. Bees receiving a more field-relevant short-term exposure survived and moved similarly to untreated bees, reiterating the relative safety of chlorantraniliprole exposure to adult honey bees at recommended label concentrations

    ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees

    Get PDF
    Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees

    Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes

    Get PDF
    Managed honey bees (Apis mellifera L.) and wild bees provide critical ecological services that shape and sustain natural, agricultural, and urban landscapes. In recent years, declines in bee populations have highlighted the importance of the pollination services they provide and the need for more research into the reasons for global bee losses. Several stressors cause declining populations of managed and wild bee species such as habitat degradation, pesticide exposure, and pathogens. Viruses, which have been implicated as a key stressor, are able to infect a wide range of species and can be transmitted both intra- and inter-specifically from infected bee species to uninfected bee species via vertical (from parent to offspring) and/or horizontal (between individuals via direct or indirect contact) transmission. To explore how viruses spread both intra- and inter-specifically within a community, we examined the impact of management, landscape type, and bee species on the transmission of four common viruses in Nebraska: Deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), Black queen cell virus (BQCV), and Sacbrood virus (SBV). Results indicated the prevalence of viruses is significantly affected (P \u3c 0.005) by bee species, virus type, and season, but not by landscape or year (P = 0.290 and 0.065 respectively). The higher prevalence of DWV detected across bee species (10.4% on Apis mellifera, 5.3% on Bombus impatiens, 6.1% on Bombus griseocollis, and 22.44% on Halictus ligatus) and seasons (10.8% in earlymid summer and 11.4% in late summer) may indicate a higher risk of interspecific transmission of DWV. However, IAPV was predominately detected in Halictus ligatus (20.7%) and in late season collections (28.1%), which may suggest species-specific susceptibility and seasonal trends in infection rates associated with different virus types. However, there were limited detections of SBV and BQCV in bees collected during both sampling periods, indicating SBV and BQCV may be less prevalent among bee communities in this area

    Interactions between pesticides and pathogen susceptibility in honey bees

    Get PDF
    There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level

    Monolithic Heat-Transfer Device

    Get PDF
    A monolithic heat-transfer device can include a container wall configured to retain a working fluid, where the container wall is formed of a single material. The container wall also includes an interior surface configured to be in fluid communication with the working fluid. The monolithic heat-transfer device also includes a channel disposed in the interior surface of the container wall, where the channel comprises a microstructure and a nanostructure. The microstructure and the nanostructure are materially contiguous with the single material forming the container wall. In some embodiments, the nanostructure comprises one or more layers of nanoparticles. The monolithic heat-transfer device can be configured as a heat pipe, which can be constructed from the container wall and a second container wall joined together and sealed to one another to contain the working fluid (e.g., using laser welding, electron beam welding (EBW), and so forth)
    • …
    corecore