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Abstract
There exist a variety of factors that negatively impact the health and survival of man-
aged honey bee colonies, including the spread of parasites and pathogens, loss 
of habitat, reduced availability or quality of food resources, climate change, poor 
queen quality, changing cultural and commercial beekeeping practices, as well as 
exposure to agricultural and apicultural pesticides both in the field and in the hive. 
These factors are often closely intertwined, and it is unlikely that a single stressor is 
driving colony losses. There is a growing consensus, however, that increasing prev-
alence of parasites and pathogens are among the most significant threats to man-
aged bee colonies. Unfortunately, improper management of hives by beekeepers 
may exacerbate parasite populations and disease transmission. Furthermore, re-
search continues to accumulate that describes the complex and largely harmful in-
teractions that exist between pesticide exposure and bee immunity. This brief re-
view summarizes our progress in understanding the impact of pesticide exposure 
on bees at the individual, colony, and community level. 

Introduction 

Bees are important pollinators of many crops and native plants, contribut-
ing about one-third of the human diet globally and providing immeasurable 
ecosystem services [1–3]. There are ca. 4000 species of bees across North 
America, but a number of species have exhibited population declines [4, 5*], 
including several bumble bee species that have decreased in both abun-
dance (up to 96%) and geographical range (23–87%) [6]. Similar declines 
have also been reported in solitary species, particularly with bees that are 
habitat and flower specialists [7]. Additionally, beekeepers have reported 
economically unsustainable, annual honey bee colony losses of ca. 31–46% 
since 2010 [8]. Research efforts are focused on the relationship between 

digitalcommons.unl.edu



O’Neal  et  al .  in  Current  Op in ion in  Insect  Sc i ence  26  (2018 )       2

current agricultural practices and consistent losses of honey bee colonies. 
This includes large-scale conversion of natural landscapes into productive 
crop fields, which has led to a reduction in forage availability and malnu-
trition, as well as increased pesticide exposures to bees [4, 8–18, 19*, 20–
22]. Other factors that affect honey bee health can include parasites and 
pathogens, with increased infestations and infections, respectively, in colo-
nies with reduced immunocompetence caused by poor nutrition and expo-
sure to pesticides [23–26, 27**]. 

There are multiple interacting stressors that affect honey bee colonies. 
For example, the ectoparasitic mite Varroa destructor feeds on the hemo-
lymph of bees, resulting in physiological deficiencies that reduce overwin-
tering success for the colony [28]. Moreover, physical damage to the bee 
cuticle caused by mite feeding can introduce several viruses into host bees 
[29, 30]. If unmanaged, Varroa mite infestations can increase the mortality 
of bees in the colony within one season [31, 32]. The lack of, or improper, 
Varroa mite management is a significant driver for losses among beginning 
and hobbyist beekeepers [33]. However, Varroa mites continue to be the 
major reason for the use of beekeeper-applied miticides or varroacides since 
their introduction to the U.S. [34, 35]. These apicultural pesticides, along with 
agricultural pesticides (insecticides, fungicides, herbicides) transported to 
the hive by foraging bees, may result in synergistic interactions that cause 
higher toxicity than compounds acting alone [36– 40, 41*]. Pesticides may 
also accumulate in the hive, affect brood development, and increase selec-
tion pressure for varroacide-resistant mites [42–44]. Laboratory studies of-
ten examine individual stressors for direct evidence of their adverse effects 
on bees; however, complex stressor interactions and the ability for bees to 
socially or behaviorally defend themselves have made it difficult to under- 
stand the causes and effects of stressor interaction in the field [25, 41*, 45, 
46]. This review examines the current literature focusing on pesticide expo-
sure and pathogen impacts on honey bees, with emphasis on the interface 
between these stressors at different levels of biological organization (i.e., in-
dividual to colony to apiary). 

Individual-level effects 

Laboratory studies have demonstrated that exposure to sublethal doses of 
pesticides can negatively affect honey  bee behavior [47, 48], foraging [49], 
longevity [43], and olfactory learning and memory [50–53]. Pesticide expo- 
sure can also impair honey bee detoxification pathways [54], and the harm-
ful effects of interactions between multiple pesticides in bees appear to be 
nearly as complex as the drug interactions observed in mammals [39, 55]. 
More pertinent to concerns related to the increasing role of pathogens in 
colony decline is the impact of pesticide exposure on the immune response 
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of honey bees and their ability to resist or tolerate pathogen infection. The 
pathogen most commonly used in laboratory studies has been the micro-
sporidium Nosema ceranae, which has proven the most tractable in con-
trolled infection studies. Significant effects on honey bee immune respon-
siveness to infection with Nosema have been observed with exposure to 
neonicotinoid pesticides [23, 24, 56–58, 59**, 60**], fipronil [23, 57, 61], 
as well as fungicides [62], in addition to altered queen physiology and sur-
vival [59**] and reduced sperm viability and gene expression [60**]. More 
noteworthy, given the wide- spread prevalence of agricultural and apicultural 
pesticide residues in the hive environment [42], is the finding that bees ex-
posed to these residues in the hive also have increased susceptibility to No-
sema [62, 63]. With regards to other honey bee pathogens, harmful interac-
tions have been demonstrated between viral pathogenicity and exposure to 
the neonicotinoid pesticide clothianidin [26], as well as the pyrethroid miti-
cide tau-fluvalinate [64]. Recent work has also employed a model insect virus 
[65**] to reveal that exposure to the formamidine miticide amitraz increases 
mortality associated with viral infections [66*]. In addition to pesticide ex-
posure, there is also mounting evidence that organosilicone spray adjuvants 
used in various pesticide formulations may pose a more serious threat than 
previously realized, as they have been demonstrated to both impair olfac-
tory learning [67] and increase viral pathogenicity in bees [68*]. Another ex-
citing recent study shows a synergistic interaction when bee larvae are ex-
posed to clothianidin or the organophosphate dimethoate in combination 
with Paenibacillus larvae, the causative agent of American foulbrood [69]. 
Finally, gene expression studies have also suggested that thymol, for-mic 
acid, and the phosphorothioate miticide coumaphos may suppress expres-
sion of genes related to bee immunity [70]. A number of recent reviews ad-
dress in greater detail the links between pesticides and bee diseases [71**] 
and provide some discussion of improvements and future directions for this 
research [72**]. Although there exist ample correlative studies to suggest a 
link between pesticide exposure and the ability of bees to resist or tolerate 
pathogen infection, there is very little known about the mechanisms of such 
a connection. One outlier is a study describing a negative modulator of NF-
kB activation (NF-kB function reviewed here [73]) that reduces honey bee 
immunocompetence when exposed to clothianidin and another neonicot-
inoid, imidacloprid, but not when exposed to the organophosphate chlor-
pyrifos [26]. Two recent studies also described an important role for the 
evolutionarily conserved ATP-sensitive inwardly rectifying potassium (KATP) 
channel in the regulation of honey bee cardiac function [65**] and antivi-
ral immunity [74**]. This supports earlier findings that KATP channels play 
a role in mediating fruit fly survival during viral infections similar to that ob-
served in mammals [75]. Although the exact mechanism has yet to be eluci-
dated, evidence suggests that KATP channels have a function in modulating 
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antiviral RNAi by facilitating tissue-specific regulation of innate immune re-
sponse mechanisms by the cellular environment of the heart [76]. Taken to-
gether, these studies also support the hypothesis that disruption of cardiac 
function and subsequent inability to maintain homeostasis may reduce the 
ability of bees to tolerate infection by pathogens [66*], providing another 
possible mechanism by which cardioactive pesticides could reduce honey 
bee immunocompetence. 

Colony-level effects 

Pesticide effects on honey bee colonies are typically studied in the field; 
however, the number of interacting biotic and abiotic stressors that can af-
fect these colonies presents variables that are difficult to manage with these 
studies. Additionally, social bee behaviors, such as age-based divisions of 
labor, can cause disparities in the evaluation of pesticide exposures, toxic-
ities, and risks to the different castes and their roles in the colony [38, 77, 
78]. For example, older forager bees are more likely to be exposed to pesti-
cides via contact or oral exposure to contaminated nectar and water sources 
than younger nurse bees, and these older bees are reported to be more sen-
sitive to these pesticide exposures [79, 80**, 81*, 82*]. By contrast, nurse 
bees are more likely to be exposed to pesticide-contaminated pollen than 
forager bees, since the nurse bees consume pollen to produce glandular 
secretions to feed brood and queen bees. Nurse bees infected by Varroa 
mites and feeding on pesticide-contaminated pollen may have higher virus 
titers compared to those feeding on uncontaminated pollen and, in turn, 
can increase the risk of transmitting viruses to the brood and queen during 
feeding [78, 83–85]. Additionally, young adult bees emerging from parasit-
ized pupae may be disproportionately impacted by Varroa mites as multi-
ple mites reproduce and feed within the developing pupal cell. Heavy par-
asitism alters physiological features critical for winter survival in host bees 
and may lead to developmental abnormalities such as malformed wings 
caused by Varroa-vectored deformed wing virus [86, 87]. In addition, the 
exposure of bees to pesticides can not only adversely affect brood care and 
production, but can affect other caste behaviors such as mating, egg lay-
ing, and other routine tasks that support healthy colony numbers. Forager 
bees exposed to certain pesticides are reported to exhibit impaired forag-
ing behaviors and cognitive functions that not only lead to reduced food 
stores, lower brood production, and higher pathogen  infections, but can 
result in increased pesticide sensitivity and disease susceptibility for mal-
nourished colonies [49, 56, 77, 88–90]. Moreover, pesticide exposure may 
impair social immunity by reducing hygienic behavior, a social behavioral 
defense mechanism in which mite-infested or disease-infected pupae are 
detected and removed from the hive before mites are fully developed or 
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disease becomes infectious [91–93]. This is an important behavioral adap-
tation to suppress the transmission and infectivity of mites and pathogens 
in colonies. However, the over-use and unregulated use of apicultural pes-
ticides by beekeepers to manage Varroa mites has conferred resistance in 
mites, further magnifying the potential for damage caused by pathogens in 
Varroa-parasitized colonies. 

Community-level effects 

The accumulation and persistence of pesticide residues occurs at alarmingly 
high levels in hive products (wax, propolis), food stores (pollen, honey), and 
bees [42, 44]. As biological indicators of the environment, honey bee ex-
posure to pesticides likely reflects the complex array of pesticide exposures 
wild bees and other pollinators are experiencing; however, more research is 
needed to support this. Furthermore, the ability of Varroa mites to vector 
a number of viruses allows for the transmission of viruses to occur via the 
phoretic movement of mites among honey bees from different colonies or 
apiaries [94]. Pathogens and pesticide residues may also be taken or robbed 
from weaker colonies by neighboring bees and brought back to different 
hives, further distributing diseases and contaminants [95]. Beekeepers also 
contribute to this issue through the common practice of moving or exchang-
ing hive components (wax, honey, pollen, and bees) from one colony to an-
other. This redistribution of pathogens and contaminants is a particular con-
cern when commercially-managed colonies are maintained at high density 
to meet pollination service demands, as is the case for almond pollination. 
In 2016, roughly 1.7 million colonies were transported to California to polli-
nate 971 400 acres of almonds, contributing $280 million in the total value 
of the pollination services provided by managed bees for this crop alone 
[96]. When managed bees are introduced to new areas, pathogens such as 
Nosema spp. and viruses may be transmitted among different bee species 
when infected bees visit common foraging sites [97–99]. Given similar pop-
ulation declines observed in wild bee communities and the prevalence of 
pesticides and pathogens in the environment globally, interactions between 
these two stressors should be a critical research focus. Pathogen spillover 
from managed bees into wild bee communities has been well documented, 
however, the implications of this are still not well understood. Additionally, 
more research to examine the relationships between pathogens and pesti-
cide exposure is clearly needed. 

Concluding remarks 

Our review has focused on the interactions between pesticides and 
pathogens and their effects on bees across multiple levels of biological 
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organization. Although significant advances have been made in identifying 
interactions at the individual level, there is still considerable progress to be 
made in understanding the physiological mechanisms that drive pesticide-
induced immunocompetence in bees. Furthermore, there exist few expla-
nations for why many of these interactions observed at the individual level 
fail to translate into quantifiable effects at the colony level. Synthesizing 
data collected from laboratory studies on individual bees and field stud-
ies on whole colonies with 50,000 or more individuals is a critical consid-
eration for assessing risk of pesticides with ecological relevance [100]. Fi-
nally, the impact of these interactions at the community level has proven 
even more challenging to describe, and presents considerable opportuni-
ties for future research. 
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