1,190 research outputs found

    Swept group delay measurement

    Get PDF
    Direct recording of group delay measurements on a system under temperature and stress tests employs modulated carrier frequency sweep over an S or X band. Reference path and test paths to separate detectors utilize a power divider e.g., a directional coupler or a hybrid T junction. An initially balanced phase comparator is swept in frequency by modulated carrier over the band of interest for different conditions of temperature and/or mechanical stress to obtain characteristic group delay curves

    Independent gain and bandwidth control of a traveling wave maser

    Get PDF
    An X-band traveling wave maser of the folded-comb type is presented, with two figure-eight coils for gain and bandwidth control. One figure-eight coil covers the full lengths of the comb structure for bandwidth adjustment of an external magnetic field. The other coil covers a central half of the comb structure for independent gain adjustment of the external magnetic field. The half of each figure-eight coil at the turn around end of the comb structure is oriented to aid the external magnetic field, and the half of each coil at the input-output end of the comb structure is oriented to buck the external magnetic field. The maser is pumped in the push-push mode with two different frequencies

    X-band, low-noise, traveling-wave maser

    Get PDF
    The development and performance of X-band traveling-wave maser (TWM) systems with effective input noise temperature of 3.5 K and bandwidths varying from 65 to 108 MHz is discussed. These TWMs are used on the 64-meter antennas at Deep Space Stations 14, 43 and 63 at 8420 MHz to meet the requirements of the Voyager-Saturn encounter. The TWMs use shortened and cooled signal input waveguide to reduce noise and are equipped with superconducting magnets and solid-state pump sources to provide the required stability performance

    Block 2A traveling-wave maser

    Get PDF
    Two 8.4GHz low-noise traveling-wave masers (TWMS) with effective input noise temperatures of 3.6 to 3.9 K and bandwidth in excess of 100 MHz have been supplied to the Deep Space Network. These TWMs are used on the 64-meter antennas at Deep Space Stations 14 and 43 to meet the requirements of the Voyager Uranus encounter. The TWMs have improved isolator assemblies and new interstage matching configurations to reduce gain/bandwidth ripple. They are equipped with followup Field Effect Transistor Amplifiers as part of the design to meet the 100-MHz bandwidth requirements of very long baseline interferometry

    Ultra-low-noise microwave amplifiers

    Get PDF
    The highlights of 20 years of maser use and development are presented. Masers discussed include cavity, traveling wave, K band, and S band. Noise temperatures measured since 1960 are summarized. Use of masers in the Deep Space Network is presented. Costs associated with the construction of masers systems are given

    The Prevention of Juvenile Delinquency: State Statutes and Programs

    Get PDF

    Dynamic nuclear polarization from current-induced electron spin polarization

    Get PDF
    Current-induced electron spin polarization is shown to produce nuclear hyperpolarization through dynamic nuclear polarization. Saturated fields of several millitesla are generated upon the application of electric field over a timescale of a hundred seconds in InGaAs epilayers and measured using optical Larmor magnetometry. The dependence on temperature, external magnetic field, and applied voltage is investigated. We find an asymmetry in which the saturation nuclear field depends on the relative alignment of the electrically generated spin polarization and the external magnetic field, which we attribute to an interplay between various electron spin dynamical processes.Comment: 5 pages, 4 figure

    An 8.4-GHz dual-maser front-end system for Parkes reimplementation

    Get PDF
    An 8.4-GHz front-end system consisting of a feedhorn, a waveguide feed assembly, dual masers, and downconverters was reimplemented at Parkes as part of the Parkes Canberra Telemetry Array for the Voyager Neptune encounter. The front-end system was originally assembled by the European Space Agency and installed on the Parkes antenna for the Giotto project. It was also used on a time-sharing basis by the Deep Space Network as part of the Parkes Canberra Telemetry Array to enhance the data return from the Voyager Uranus encounter. At the conclusion of these projects in 1986, part of the system was then shipped to JPL on loan for reimplementation at Parkes for the Voyager Neptune encounter. New design and implementation required to make the system operable at Parkes included new microwave front-end control cabinets, closed-cycle refrigeration monitor system, noise-adding radiometer system, front-end controller assembly, X81 local oscillator multiplier, and refurbishment of the original dual 8.4-GHz traveling-wave masers and waveguide feed system. The front-end system met all requirements during the encounter and was disassembled in October 1989 and returned to JPL

    Micromechanics-Based Inelastic Finite Element Analysis Accomplished Via Seamless Integration of MAC/GMC

    Get PDF
    A critical issue in the micromechanics-based analysis of composite structures becomes the availability of a computationally efficient homogenization technique: one that is 1) Capable of handling the sophisticated, physically based, viscoelastoplastic constitutive and life models for each constituent; 2) Able to generate accurate displacement and stress fields at both the macro and the micro levels; 3) Compatible with the finite element method. The Generalized Method of Cells (GMC) developed by Paley and Aboudi is one such micromechanical model that has been shown to predict accurately the overall macro behavior of various types of composites given the required constituent properties. Specifically, the method provides "closed-form" expressions for the macroscopic composite response in terms of the properties, size, shape, distribution, and response of the individual constituents or phases that make up the material. Furthermore, expressions relating the internal stress and strain fields in the individual constituents in terms of the macroscopically applied stresses and strains are available through strain or stress concentration matrices. These expressions make possible the investigation of failure processes at the microscopic level at each step of an applied load history

    System noise temperature investigation of the DSN S-band polarization diverse systems for the Galileo S-band Contingency Mission

    Get PDF
    This article describes measurements made at all three Deep Space Network 70-m S-band polarization diverse (SPD) systems to determine and eliminate the cause of the 1-K elevation in follow-up noise temperature in the listen-only mode of the SPD systems at DSS 43 and DSS 63. The system noise temperatures obtained after finding and correcting the cause of the elevated follow-up noise temperature are also reported
    corecore