73 research outputs found

    Accelerated inbreeding depression suggests synergistic epistasis for deleterious mutations in Drosophila melanogaster

    Get PDF
    Epistasis may have important consequences for a number of issues in quantitative genetics and evolutionary biology. In particular, synergistic epistasis for deleterious alleles is relevant to the mutation load paradox and the evolution of sex and recombination. Some studies have shown evidence of synergistic epistasis for spontaneous or induced deleterious mutations appearing in mutation-accumulation experiments. However, many newly arising mutations may not actually be segregating in natural populations because of the erasing action of natural selection. A demonstration of synergistic epistasis for naturally segregating alleles can be achieved by means of inbreeding depression studies, as deleterious recessive allelic effects are exposed in inbred lines. Nevertheless, evidence of epistasis from these studies is scarce and controversial. In this paper, we report the results of two independent inbreeding experiments carried out with two different populations of Drosophila melanogaster. The results show a consistent accelerated inbreeding depression for fitness, suggesting synergistic epistasis among deleterious alleles. We also performed computer simulations assuming different possible models of epistasis and mutational parameters for fitness, finding some of them to be compatible with the results observed. Our results suggest that synergistic epistasis for deleterious mutations not only occurs among newly arisen spontaneous or induced mutations, but also among segregating alleles in natural populationsWe acknowledge the support by Uvigo Marine Research Centre funded by the “Excellence in Research (INUGA)” Programme from the Regional Council of Culture, Education and Universities, with co-funding from the European Union through the ERDF Operational Programme Galicia 2014-2020. This work was funded by Agencia Estatal de Investigación (AEI) (CGL2016-75904-C2-1-P), Xunta de Galicia (ED431C 2016-037) and Fondos Feder: “Unha maneira de facer Europa.” SD was founded by a predoctoral (FPI) grant from Ministerio de Economía y Competitividad, SpainS

    Lymnaea schirazensis, an Overlooked Snail Distorting Fascioliasis Data: Genotype, Phenotype, Ecology, Worldwide Spread, Susceptibility, Applicability

    Get PDF
    BACKGROUND: Lymnaeid snails transmit medical and veterinary important trematodiases, mainly fascioliasis. Vector specificity of fasciolid parasites defines disease distribution and characteristics. Different lymnaeid species appear linked to different transmission and epidemiological patterns. Pronounced susceptibility differences to absolute resistance have been described among lymnaeid populations. When assessing disease characteristics in different endemic areas, unexpected results were obtained in studies on lymnaeid susceptibility to Fasciola. We undertook studies to understand this disease transmission heterogeneity. METHODOLOGY/PRINCIPAL FINDINGS: A ten-year study in Iran, Egypt, Spain, the Dominican Republic, Mexico, Venezuela, Ecuador and Peru, demonstrated that such heterogeneity is not due to susceptibility differences, but to a hitherto overlooked cryptic species, Lymnaea schirazensis, confused with the main vector Galba truncatula and/or other Galba/Fossaria vectors. Nuclear rDNA and mtDNA sequences and phylogenetic reconstruction highlighted an old evolutionary divergence from other Galba/Fossaria species, and a low intraspecific variability suggesting a recent spread from one geographical source. Morphometry, anatomy and egg cluster analyses allowed for phenotypic differentiation. Selfing, egg laying, and habitat characteristics indicated a migration capacity by passive transport. Studies showed that it is not a vector species (n = 8572 field collected, 20 populations): snail finding and penetration by F. hepatica miracidium occur but never lead to cercarial production (n = 338 experimentally infected). CONCLUSIONS/SIGNIFICANCE: This species has been distorting fasciolid specificity/susceptibility and fascioliasis geographical distribution data. Hence, a large body of literature on G. truncatula should be revised. Its existence has henceforth to be considered in research. Genetic data on livestock, archeology and history along the 10,000-year post-domestication period explain its wide spread from the Neolithic Fertile Crescent. It is an efficient biomarker for the follow-up of livestock movements, a crucial aspect in fascioliasis emergence. It offers an outstanding laboratory model for genetic studies on susceptibility/resistance in F. hepatica/lymnaeid interaction, a field of applied research with disease control perspectives

    A controllability approach to shape identification

    Get PDF
    The main goal of this work is to discuss a controllability approach to the image matching/shape identification problem, an important issue in many applications, medical ones in particular. The matching problem is formulated as an approximate controllability problem involving a cost functional whose gradient is computed using an adjoint equation based methodology. The time discrete version of the image matching problem is also discussed in this work

    Enzyme-like Supramolecular Iridium Catalysis Enabling C−H Bond Borylation of Pyridines with meta-Selectivity

    No full text
    The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C−H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, we report herein a supramolecular catalyst harnessing Zn⋅⋅⋅N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C−H bond borylations with enzymatic Michaelis–Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns

    Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations

    No full text
    Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C−H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C−B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states
    corecore