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A controllability approach to shape identification
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Abstract

The main goal of this work is to discuss a controllability approach to the image matching/shape identification problem,
an important issue in many applications, medical ones in particular. The matching problem is formulated as an approximate
controllability problem involving a cost functional whose gradient is computed using an adjoint equation based methodology.
The time discrete version of the image matching problem is also discussed in this work.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Automatic registration of image pairs pervades artificial vision, starting with stereovision, and optical flow in video
sequences. In biomedical imaging, automatic matching for 3D images of soft organs across different subjects is an
important step, and quantifying dissimilarities between organ shapes impacts clinical diagnosis. Nonlinear image
registration relies on minimizing cost functionals combining two terms, smoothness and disparity. Similar strategies
for “space warping” of 3D images yield robust comparisons of soft shapes. A powerful mathematical approach,
linked to geodesics in infinite dimensional Lie groups of diffeomorphisms of R3, has been successfully explored for
soft shape matching [1–4].

2. Optimal flows of infinitesimal deformations

For incompressible fluids, Arnold [5] showed that, if ft (x) is the position at time t of a fluid particle starting at
x , then the map t → ft (x) defines a geodesic in the group of diffeomorphisms of R3, for the metric defined by the
integral in time and space of the fluid kinetic energy. In the past 10 years, geodesics in groups of diffeomorphisms
have provided a fertile framework for optimal matching of curves and surfaces by diffeomorphisms with minimal
“energy” [1–4]. Call U the space of “infinitesimal deformation” flows v : t → vt , 0 ≤ t ≤ 1, where each vt is a
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vector field null at infinity in R3, belonging to a Hilbert space H (e.g. a Sobolev space H s with s > 5/2), with strong
Lipschitz continuity in t , and finite “kinetic energy” J (v) defined by

J (v) =
1
2

∫ 1

0
|vt |

2dt, where |vt | is the norm of vt in H.

Each flow v in U generates a map t → ft , 0 ≤ t ≤ 1, into the group of diffeomorphisms of R3, by integration over t
of the O.D.E.

∂t ft (x) = vt (ft (x)), with the initial condition f0(x) = x, for all x ∈ R3. (1)

As shown in [4], the set G of all g = f1 : R3
→ R3 thus reachable at t = 1 by integrating arbitrary flows v in U is a

group G of diffeomorphisms of R3. Let e be the identity map of R3, and define for all g in G

D2(e, g) = minimal kinetic energy J (v) over all flows v in U such that f1 = g.

Then, for each g ∈ G, there exists a minimizing flow v in U for which f1 = g and J (v) = D2(e, g). The corresponding
map t → ft , 0 ≤ t ≤ 1, is a geodesic linking e to g in the group G, for the metric defined by the left-invariant distance
D(g,h) given on G by

D(g,h) = D(e, g−1h) for all g,h in G.

3. Optimal matching of soft shapes

Call S the set of “soft shapes” modelled by piecewise smooth compact surfaces Γ in R3. As in [2,3], consider each
Γ in S as the support of a natural positive measure M(Γ ) of mass 1, well approximated by linear combinations of
Dirac measures located at the nodes of increasingly finer meshes on Γ . Let Q(y − x) be a positive definite kernel of
class C2 on R3

×R3, null at infinity, as well as its derivatives of orders 1 and 2. Endow the space of bounded measures
B M with the Hilbert scalar product

〈µ1, µ2〉Q =

∫ ∫
Q(y − x)dµ1(x)dµ2(y), and associated norm ‖µ‖Q .

Diffeomorphisms f of R3 act naturally on B M by standard transport of measures. For optimal matching of two given
shapes Γ0 and ΓR in R3, the geometric disparity between f(Γ0) and ΓR can be defined as

Disp(f) = ‖f(M0)− MR‖
2
Q, where M0 = M(Γ0) and MR = M(ΓR). (2)

Then there exists [2,3] a flow v in U solving the minimizing problem

minimize Cost(v) = J (v)+ Disp(f1) = kinetic energy + final disparity, for v in U .

The final diffeomorphism f1 of R3 reached at time 1 by integration of a minimizing v is an optimal matching between
shapes Γ0 and ΓR. Replacing the kernel Q by ε−1 Q with ε tending to 0 shows [2–4] the existence of a flow v in U
solving the constrained minimization problem

minimize J (v) for v in U, under the constraint f1(Γ0) = ΓR. (3)

The minimal value of J (v) then defines the square of a natural distance D(Γ0,ΓR) between shapes Γ0 and ΓR. These
approaches have been efficiently applied [1,3] to databases of 3D MRI images of human brains, in the context of
non-invasive medical diagnosis.

4. A controllability approach

The variational problems just presented above are approximate controllability problems in Hilbert spaces, in
the sense of J.L. Lions. We apply to their numerical solutions the rich computational methodology developed for
classical controllability problems for systems governed by partial differential equations (see [6]). We show how these
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controllability techniques can address the solution of the shape comparison problems. For simplicity we focus our
discussion on curves in R2 but our approach is easily extended to piecewise smooth surfaces in R3.

Define now the space U of vector field flows v on R2 by U = L2(0, 1; Vα) where Vα is the Sobolev space
(Hα(R2))2, endowed with the norm ‖ · ‖α with α > 2. Let Γ0 and ΓR be piecewise smooth bounded curves in R2. As
seen above, one can define a natural distance D(Γ0,ΓR) between Γ0 and ΓR by D(Γ0,ΓR) = [J (u)]1/2, where u ∈ U
solves the minimization problem (3), which we restate as

minimize J (v) =
1
2

∫ 2

0
|vt |

2
αdt for v in U, under the constraint f1(Γ0) = ΓR, (4)

where ft is solution of the ODE (1) associated with the vector field flow v. The minimization problem (4) is an exact
controllability problem in the sense of [6], with v being the control variable, U the control set, f the state variable and
(1) the state equation.

Following [6] we relax the condition f1(Γ0) = ΓR and approximate the constrained minimization problem (4) by
the penalized unconstrained problem

minimize Jε(v) = J (v)+
1
2ε

Disp(f1) for v in U, (5)

where ε > 0 is a small parameter. The disparity term Disp(f1) is analogous to (2) above and is computed as follows.
Let the self-adjoint operator S be a duality isomorphism between H2(R2) and H−2(R2). Call 〈·, ·〉 the duality pairing
between these two spaces. Define Γ1 = f1(Γ0). Let ψ1, ψR be the unique solutions in H2(R2) of the following linear
variational problems:

〈Sψ1, ϕ〉 =

∫
Γ1

ϕ dΓ1, 〈SψR, ϕ〉 =

∫
ΓR

ϕ dΓR, ∀ϕ ∈ H2(R2).

We then compute Disp(f1) as

Disp(f1) =
1
2ε

〈S(ψ1 − ψR), ψ1 − ψR〉 for v in U .

Proofs analogous to those of [2,4] show the existence of uε in U minimizing (5) and of the differential D Jε(uε) of
Jε(·) at uε, so that uε verifies the optimality condition

D Jε(uε) = 0.

To solve by iterative methods the approximate problem (5), one needs to compute D Jε(v) for v in U (other approaches
are possible, like those based on automatic differentiation). The computation of D Jε(v) is sketched in Section 5.

5. On the computation of D Jε(v)

In the following, 〈·, ·〉 denotes various duality pairings (details omitted here). For an arbitrary initial point x in
R2 we define y(t) = y(x, t) = ft (x). Using classical perturbation techniques (see [6]), we can show with obvious
notation that

〈D Jε(v),w〉 =

∫ 1

0
(vt ,wt )αdt +

∫ 1

0
〈pt ,wt (yt )〉dt, ∀v,w ∈ U, (6)

where the vector-valued function p = pt (x) is solution of the adjoint equation

−
∂p
∂t

− ∇x v(y(t), t)tp = 0 in R2
× (0, 1) and p1 = q, (7)

with the distribution q defined by

〈q, z〉 =
1
ε

[∫ L

0
∇(ψ1 − ψR) (y(x0(s), 1)) · z(x0(s)) |T1(s)| ds

+

∫ L

0
(ψ1 − ψR) (y(x0(s), 1))T1(s) · ∇x z(x0(s))

dx0

ds
(s) |T1(s)|

−1 ds

]
, ∀z ∈ (D(R2))2, (8)
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where s → x0(s), 0 < s < L , is the arc length parametrization of Γ0, and each vector T1(s) is tangent to Γ1 at the
point y(x0(s), 1), and defined by

T1(s) = ∇x y(x0(s), 1)
dx0

ds
(s).

After appropriate space–time discretization, the discrete analogues of (6)–(8) can be used to compute an
approximation of uε, via conjugate gradient or BFGS algorithms. In the following section we develop the time
discretization, which is usually the most delicate part.

6. Time discretization

We consider the time discretization step ∆t , defined by ∆t = 1/N , where N is a positive integer. Then, if we
denote n∆t by tn , we have 0 < t1 < t2 < · · · < t N

= 1. Now, we approximate U by U∆t
= (Vα)N . Then, we

approximate the minimization problem (5) by

minimize J∆t
ε (v∆t ),

with v∆t
= (vn)N

n=1,

J∆t
ε (v∆t ) =

∆t

2

N∑
n=1

|vn
|
2dt +

1
2ε

〈S(ψ∆t
1 − ψR), ψ

∆t
1 − ψR〉

and ψ∆t
1 is defined by the unique solution in H2(R2) of the following linear variational problem:

〈Sψ∆t
1 , ϕ〉 =

∫
Γ1

ϕ dΓ∆t
1 , ∀ϕ ∈ H2(R2).

Here, Γ∆t
1 = {yN (x) : x ∈ Γ0} and y∆t

= (yn)N
n=0 is the solution ofy0(x) = x, for all x ∈ R2. For n = 1, . . . , N , yn is computed by

yn
− yn−1

∆t
= vn(yn−1) in R2.

Finally, endowing the space U∆t with the Hilbert scalar product (·, ·)∆t defined by

(v∆t ,w∆t )∆t = ∆t
N∑

n=1

(vn, wn)α

and using again classical perturbation techniques, we can show with obvious notation that

〈D J∆t
ε (v∆t ),w∆t

〉 = (v∆t ,w∆t )∆t + ∆t
N∑

n=1

〈pn,wn(yn−1)〉, ∀v∆t ,w∆t
∈ U∆t ,

where {pn
}

N+1
n=1 = {pn(x)}N+1

n=1 is solution of the time discrete adjoint equationpN+1
= q and for n = N , N − 1, . . . , 1,pn is computed by

−
pn+1

− pn

∆t
− ∇vn+1(yn)tpn+1

= 0 in R2,

with the distribution q defined by

〈q, z〉 =
1
ε

[∫ L

0
∇(ψ∆t

1 − ψR)
(

yN (x0(s))
)

· z(x0(s))
∣∣∣T∆t

1 (s)
∣∣∣ ds

+

∫ L

0

(
ψ∆t

1 − ψR

) (
yN (x0(s))

)
T∆t

1 (s) · ∇z(x0(s))
dx0

ds
(s)

∣∣∣T∆t
1 (s)

∣∣∣−1
]

ds, ∀z ∈ (D(R2))2,
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with

T∆t
1 (s) = ∇yN (x0(s))

dx0

ds
(s).
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