1,830 research outputs found

    On the strange quark mass with improved staggered quarks

    Get PDF
    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.Comment: Lattice2002(spectrum) Latex 3 pages, 2 figure

    Physical Effects of Infrared Quark Eigenmodes in LQCD

    Get PDF
    A truncated determinant algorithm is used to study the physical effects of the quark eigenmodes associated with eigenvalues below 400 MeV. This initial study focuses on coarse lattices (with O(a^2) improved gauge action), light internal quark masses and large physical volumes. Four bellwether full QCD processes are discussed: topological charge distributions, the eta prime propagator, string breaking as observed in the static energy and the rho decay into two pions.Comment: LATTICE99(Confinement); 3pgs(Latex), 4figs.(eps

    Mass renormalisation for improved staggered quarks

    Get PDF
    Improved staggered quark actions are designed to suppress flavour changing strong interactions. We discuss the perturbation theory for this type of actions and show the improvements to reduce the quark mass renormalisation compared to naive staggered quarks. The renormalisations are of similar size as for Wilson quarks.Comment: LaTeX, 3 pages, Lattice2001(spectrum

    Mean link versus average plaquette tadpoles in lattice NRQCD

    Get PDF
    We compare mean-link and average plaquette tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Simulations are done for the three quarkonium systems ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at a large number of lattice spacings. A number of features emerge, all of which favor tadpole renormalization using mean links. This includes much better scaling of the hyperfine splittings in the three quarkonium systems. We also find that relativistic corrections to the spin splittings are smaller with mean-link tadpoles, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units (with the bare quark masses turning out to be much larger with mean-link tadpoles).Comment: LATTICE(heavyqk) 3 pages, 2 figure

    Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics

    Get PDF
    We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.Comment: 21 pages, 8 figures, 5 table

    Update: Accurate Determinations of alpha_s from Realistic Lattice QCD

    Full text link
    We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table

    Analytical results for the confinement mechanism in QCD_3

    Get PDF
    We present analytical methods for investigating the interaction of two heavy quarks in QCD_3 using the effective action approach. Our findings result in explicit expressions for the static potentials in QCD_3 for long and short distances. With regard to confinement, our conclusion reflects many features found in the more realistic world of QCD_4.Comment: 24 pages, uses REVTe

    Precise charm to strange mass ratio and light quark masses from full lattice QCD

    Full text link
    By using a single formalism to handle charm, strange and light valence quarks in full lattice QCD for the first time, we are able to determine ratios of quark masses to 1%. For mc/msm_c/m_s we obtain 11.85(16), an order of magnitude more precise than the current PDG average. Combined with 1% determinations of the charm quark mass now possible this gives mˉs(2GeV)=\bar{m}_s(2{\rm GeV}) = 92.4(1.5) MeV. The MILC result for ms/ml=27.2(3)m_s/m_l = 27.2(3) yields mˉl(2GeV)\bar{m}_l(2{\rm GeV}) = 3.40(7) MeV for the average of uu and dd quark masses.Comment: 4 pages, 2 figures. Version accepted by Physical Review Letters. Changes include modifying the title, using the MILC value for m_s/m_l which changes slightly the resulting up and down quark masses and their average, adding some references and making other small adjustments to the text for space reasons
    • …
    corecore