38 research outputs found

    Time-resolved Fragmentation of Diiodomethane studied in an XUV Pump-Probe Experiment

    Get PDF
    The dissociation dynamics of diiodomethane molecules (CH2I2) have been investigated in a 97.6 eV XUV-pump XUV-probe measurement at the reaction microscope endstation at the free-electron laser FLASH2. Ionic fragments created by 4d inner-valence ionisation followed by Auger decay have been detected in coincidence, enabling a kinematically complete reconstruction of the dissociation pathways. In the CH2+ + I+ + I+ one-photon absorption channel a concerted three-body breakup and a sequential dissociation via a rotating intermediate CH2I++ ion have been identified. Classical simulations have been performed, and are compared to the data and to `Atom Centered Density Matrix Propagation' (ADMP) calculations conducted by MartĂ­n et al. Both types of simulations reproduce different aspects of the observed fragmentation dynamics. In the time-resolved two-photon absorption channels I+++ + CH2I+ and CH2+ + I+++ + I+, charge transfer occurs at short internuclear distances leading to suppression of the I+++ charge state formation. The timescales of charge transfer in the two different dissociation channels have been measured to be 200 +- 11 fs for I+++ + CH2I+ and 119 +- 15 fs for CH2+ + I+++ + I+

    Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection

    Full text link
    Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, volume 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (PRL, volume 64, 1990, 3019). Here, their approach is analyzed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. That way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection setups is improved significantly. To the authors' knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands.Comment: 14 pages, 7 figure

    Kassiopeia: A Modern, Extensible C++ Particle Tracking Package

    Full text link
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopei

    Temperature gradient driven heat flux closure in fluid simulations of collisionless reconnection

    No full text
    Recent efforts to include kinetic effects in fluid simulations of plasmas have been very promising. Concerning collisionless magnetic reconnection, it has been found before that damping of the pressure tensor to isotropy leads to good agreement with kinetic runs in certain scenarios. An accurate representation of kinetic effects in reconnection was achieved in a study by Wang et al. (Phys. Plasmas, vol. 22, 2015, 012108) with a closure derived from earlier work by Hammett and Perkins (Phys. Rev. Lett., vol. 64, 1990, 3019). Here, their approach is analysed on the basis of heat flux data from a Vlasov simulation. As a result, we propose a new local closure in which heat flux is driven by temperature gradients. This way, a more realistic approximation of Landau damping in the collisionless regime is achieved. Previous issues are addressed and the agreement with kinetic simulations in different reconnection set-ups is improved significantly. To the authors’ knowledge, the new fluid model is the first to perform well in simulations of the coalescence of large magnetic islands

    Atomic, Molecular and Cluster Science with the Reaction Microscope Endstation at FLASH2

    No full text
    The reaction microscope (REMI) endstation for atomic and molecular science at the free-electron laser FLASH2 at DESY in Hamburg is presented together with a brief overview of results recently obtained. The REMI allows coincident detection of electrons and ions that emerge from atomic or molecular fragmentation reactions in the focus of the extreme-ultraviolet (XUV) free-electron laser (FEL) beam. A large variety of target species ranging from atoms and molecules to small clusters can be injected with a supersonic gas-jet into the FEL focus. Their ionization and fragmentation dynamics can be studied either under single pulse conditions, or for double pulses as a function of their time delay by means of FEL-pump–FEL-probe schemes and also in combination with a femtosecond infrared (IR) laser. In a recent upgrade, the endstation was further extended by a light source based on high harmonic generation (HHG), which is now available for upcoming FEL/HHG pump–probe experiments

    Linear dichroism in few-photon ionization of laser-dressed helium

    No full text
    Abstract: Ionization of laser-dressed atomic helium is investigated with focus on photoelectron angular distributions stemming from two-color multi-photon excited states. The experiment combines extreme ultraviolet (XUV) with infrared (IR) radiation, while the relative polarization and the temporal delay between the pulses can be varied. By means of an XUV photon energy scan over several electronvolts, we get access to excited states in the dressed atom exhibiting various binding energies, angular momenta, and magnetic quantum numbers. Furthermore, varying the relative polarization is employed as a handle to switch on and off the population of certain states that are only accessible by two-photon excitation. In this way, photoemission can be suppressed for specific XUV photon energies. Additionally, we investigate the dependence of the photoelectron angular distributions on the IR laser intensity. At our higher IR intensities, we start leaving the simple multi-photon ionization regime. The interpretation of the experimental results is supported by numerically solving the time-dependent Schrödinger equation in a single-active-electron approximation. Graphic abstract: [Figure not available: see fulltext.
    corecore