516 research outputs found

    Higher-order correlations between different moments of two flow amplitudes in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV

    No full text
    International audienceThe correlations between different moments of two flow amplitudes, extracted with the recently developed asymmetric cumulants, are measured in Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}} = 5.02 TeV recorded by the ALICE detector at the LHC. The magnitudes of the measured observables show a dependence on the different moments as well as on the collision centrality, indicating the presence of non-linear response in all even moments up to the eighth. Furthermore, the higher-order asymmetric cumulants show different signatures than the symmetric and lower-order asymmetric cumulants. Comparisons with state-of-the-art event generators using two different parameterizations obtained from Bayesian optimization show differences between data and simulations in many of the studied observables, indicating a need for further tuning of the models behind those event generators. These results provide new and independent constraints on the initial conditions and transport properties of the system created in heavy-ion collisions

    First measurement of the t|t|-dependence of incoherent J/ψ\psi photonuclear production

    No full text
    International audienceThe first measurement of the cross section for incoherent photonuclear production of J/ψ\psi vector meson as a function of the Mandelstam t|t| variable is presented. The measurement was carried out with the ALICE detector at midrapidity, y<0.8|y|<0.8, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair sNN=5.02\sqrt{s_{\mathrm{NN}}} = 5.02 TeV. This rapidity interval corresponds to a Bjorken-xx range (0.3(0.3-1.4)×1031.4)\times 10^{-3}. Cross sections are reported in five t|t| intervals in the range 0.04<t<10.04<|t|<1~GeV2^2 and compared to the predictions of different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a t|t|-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data

    Data-driven precision determination of the material budget in ALICE

    No full text
    The knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion.The knowledge of the material budget with a high precision is fundamental for measurements of direct photon production using the photon conversion method due to its direct impact on the total systematic uncertainty. Moreover, it influences many aspects of the charged-particle reconstruction performance. In this article, two procedures to determine data-driven corrections to the material-budget description in ALICE simulation software are developed. One is based on the precise knowledge of the gas composition in the Time Projection Chamber. The other is based on the robustness of the ratio between the produced number of photons and charged particles, to a large extent due to the approximate isospin symmetry in the number of produced neutral and charged pions. Both methods are applied to ALICE data allowing for a reduction of the overall material budget systematic uncertainty from 4.5% down to 2.5%. Using these methods, a locally correct material budget is also achieved. The two proposed methods are generic and can be applied to any experiment in a similar fashion

    Measurement of Non-prompt D0\rm D^0-meson Elliptic Flow in Pb-Pb Collisions at sNN\sqrt{s_{\rm NN}} = 5.02 TeV

    No full text
    International audienceThe elliptic flow (v2v_2) of D0\rm D^0 mesons from beauty-hadron decays (non-prompt D0\rm D^0) was measured in midcentral (30-50%) Pb-Pb collisions at a centre-of-mass energy per nucleon pair sNN\sqrt{s_{\rm NN}} = 5.02 TeV with the ALICE detector at the LHC. The D0\rm D^0 mesons were reconstructed at midrapidity (y<0.8|y|<0.8) from their hadronic decay D0Kπ+\mathrm{D^0 \to K^-\pi^+}, in the transverse momentum interval 2<pT<122 < p_{\rm T} < 12 GeV/cc. The result indicates a positive v2v_2 for non-prompt D0\rm D^0 mesons with a significance of 2.7σ\sigma. The non-prompt D0\rm D^0-meson v2v_2 is lower than that of prompt non-strange D mesons with 3.2σ\sigma significance in 2<pT<82 < p_{\rm T} < 8 GeV/cc, and compatible with the v2v_2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties

    Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies

    No full text
    International audienceThe first measurements of skewness and kurtosis of mean transverse momentum (pT\langle p_\mathrm{T}\rangle) fluctuations are reported in Pb-Pb collisions at sNN\sqrt{s_\mathrm{NN}} = 5.02 TeV, Xe-Xe collisions at sNN\sqrt{s_\mathrm{NN}}== 5.44 TeV and pp collisions at s=5.02\sqrt{s} = 5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size dNch/dηη<0.51/3\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta\rangle_{|\eta|<0.5}^{1/3}, using charged particles with transverse momentum (pTp_\mathrm{T}) and pseudorapidity (η\eta), in the range 0.2<pT<3.00.2 < p_\mathrm{T} < 3.0 GeV/cc and η<0.8|\eta| < 0.8, respectively. In Pb-Pb and Xe-Xe collisions, positive skewness is observed in the fluctuations of pT\langle p_\mathrm{T}\rangle for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of pT\langle p_\mathrm{T}\rangle fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb-Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb--Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions

    Photoproduction of K+^{+}K^{-} pairs in ultra-peripheral collisions

    No full text
    International audienceK+^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020)\phi (1020) mesons, or directly as non-resonant K+^{+}K^{-} pairs. Measurements of K+^{+}K^{-} photoproduction probe the couplings between the ϕ(1020)\phi (1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+^{+}K^{-} pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+^{+}K^{-} production. There is significant K+^{+}K^{-} production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.41.1 < M_{\rm{KK}} < 1.4 GeV/c2c^2 above the ϕ(1020)\phi (1020) resonance, for rapidity yKK<0.8|y_{\rm{KK}}|<0.8 and pT,KK<0.1p_{\rm T,KK} < 0.1 GeV/cc, the measured coherent photoproduction cross section is dσ/dy\mathrm{d}\sigma/\mathrm{d}y = 3.37 ± 0.61\pm\ 0.61 (stat.) ± 0.15\pm\ 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,nW_{\gamma \mathrm{Pb, n}} ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020)\phi (1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020)\phi (1020) decays, direct K+^{+}K^{-} photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+^{+}K^{-} photoproduction are presented

    Photoproduction of K+^{+}K^{-} pairs in ultra-peripheral collisions

    No full text
    International audienceK+^{+}K^{-} pairs may be produced in photonuclear collisions, either from the decays of photoproduced ϕ(1020)\phi (1020) mesons, or directly as non-resonant K+^{+}K^{-} pairs. Measurements of K+^{+}K^{-} photoproduction probe the couplings between the ϕ(1020)\phi (1020) and charged kaons with photons and nuclear targets. We present the first measurement of coherent photoproduction of K+^{+}K^{-} pairs on lead ions in ultra-peripheral collisions using the ALICE detector, including the first investigation of direct K+^{+}K^{-} production. There is significant K+^{+}K^{-} production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<MKK<1.41.1 < M_{\rm{KK}} < 1.4 GeV/c2c^2 above the ϕ(1020)\phi (1020) resonance, for rapidity yKK<0.8|y_{\rm{KK}}|<0.8 and pT,KK<0.1p_{\rm T,KK} < 0.1 GeV/cc, the measured coherent photoproduction cross section is dσ/dy\mathrm{d}\sigma/\mathrm{d}y = 3.37 ± 0.61\pm\ 0.61 (stat.) ± 0.15\pm\ 0.15 (syst.) mb. The centre-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,nW_{\gamma \mathrm{Pb, n}} ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for ϕ(1020)\phi (1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of ϕ(1020)\phi (1020) decays, direct K+^{+}K^{-} photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+^{+}K^{-} photoproduction are presented

    Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions at the LHC

    No full text
    International audienceMeasurements of charged-particle production in pp, p-Pb, and Pb-Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum (pTtrigp_{\mathrm{T}}^{\rm trig}) in the range 8<pTtrig<158<p_{\mathrm{T}}^{\rm trig}<15 GeV/c/c. The toward and away regions contain the primary and recoil jets, respectively; both regions are accompanied by the underlying event (UE). In contrast, the transverse region perpendicular to the direction of the trigger particle is dominated by the so-called UE dynamics, and includes also contributions from initial- and final-state radiation. The relative transverse activity classifier, RT=NchT/NchTR_{\mathrm{T}}=N_{\mathrm{ch}}^{\mathrm{T}}/\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle, is used to group events according to their UE activity, where NchTN_{\mathrm{ch}}^{\mathrm{T}} is the charged-particle multiplicity per event in the transverse region and NchT\langle N_{\mathrm{ch}}^{\mathrm{T}}\rangle is the mean value over the whole analysed sample. The energy dependence of the RTR_{\mathrm{T}} distributions in pp collisions at s=2.76\sqrt{s}=2.76, 5.02, 7, and 13 TeV is reported, exploring the Koba-Nielsen-Olesen (KNO) scaling properties of the multiplicity distributions. The first measurements of charged-particle pTp_{\rm T} spectra as a function of RTR_{\mathrm{T}} in the three azimuthal regions in pp, p-Pb, and Pb-Pb collisions at sNN=5.02\sqrt{s_{\rm NN}}=5.02 TeV are also reported. Data are compared with predictions obtained from the event generators PYTHIA 8 and EPOS LHC. This set of measurements is expected to contribute to the understanding of the origin of collective-like effects in small collision systems (pp and p-Pb)

    Femtoscopic correlations of identical charged pions and kaons in pp collisions at s=13\sqrt{s}=13 TeV with event-shape selection

    No full text
    International audienceCollective behavior has been observed in high-energy heavy-ion collisions for several decades. Collectivity is driven by the high particle multiplicities that are produced in these collisions. At the Large Hadron Collider (LHC), features of collectivity have also been seen in high-multiplicity proton-proton collisions that can attain particle multiplicities comparable to peripheral Pb-Pb collisions. One of the possible signatures of collective behavior is the decrease of femtoscopic radii extracted from pion and kaon pairs emitted from high-multiplicity collisions with increasing pair transverse momentum. This decrease can be described in terms of an approximate transverse mass scaling. In the present work, femtoscopic analyses are carried out by the ALICE collaboration on charged pion and kaon pairs produced in pp collisions at s=13\sqrt{s}=13 TeV from the LHC to study possible collectivity in pp collisions. The event-shape analysis method based on transverse sphericity is used to select for spherical versus jet-like events, and the effects of this selection on the femtoscopic radii for both charged pion and kaon pairs are studied. This is the first time this selection method has been applied to charged kaon pairs. An approximate transverse-mass scaling of the radii is found in all multiplicity ranges studied when the difference in the Lorentz boost for pions and kaons is taken into account. This observation does not support the hypothesis of collective expansion of hot and dense matter that should only occur in high-multiplicity events. A possible alternate explanation of the present results is based on a scenario of common emission conditions for pions and kaons in pp collisions for the multiplicity ranges studied

    Multiplicity dependence of charged-particle intra-jet properties in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at s\sqrt{s} = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region (η<0.9|\eta| < 0.9) using the sequential recombination anti-kTk_{\rm T} algorithm with jet resolution parameters RR = 0.2, 0.3, and 0.4 for the transverse momentum (pTp_{\rm T}) interval 5-110 GeV/cc. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet pTp_{\rm T} in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation functions zchz^{\rm ch} and ξch\xi^{\rm ch} are measured for different jet-pTp_{\rm T} intervals. Jet-pTp_{\rm T} independent fragmentation of leading jets is observed for wider jets except at high- and low-zchz^{\rm ch}. The observed "hump-backed plateau" structure in the ξch\xi^{\rm ch} distribution indicates suppression of low-pTp_{\rm T} particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-zchz^{\rm ch} particles accompanied by a suppression of high-zchz^{\rm ch} particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-pTp_{\rm T} jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet pTp_{\rm T}. These measurements provide important constraints to models of jet fragmentation
    corecore