496 research outputs found

    Eucheuma and Kappaphycus : taxonomy and cultivation

    Get PDF
    The Genera Eucheuma, Kappaphycus and Hypnea are three important genera of carrageenophytes which are abundant in the Philippines and in the tropical Asia and Western Pacific. The most useful species for the source of kappa carageenan is K. alvarezii called E. "cottonii" of commerce. E. denticulatum called E. "spinosum" of commerce is also the most useful species for the sources of iota carrageenan. The different methods of Eucheuma cultivation were tried in the past from very simple bottom culture to the more sophisticated types using some form of a support system, such as the raft method, the fixed off-bottom- (net) method, tubular net method and the fixed off bottom monoline method. Recently the floating method of culture are used in area where water current is weak. At present Encheuma and kappaphycus are exported in four form, as dried raw seaweeds, as alkali-treated chip or as a semi-processed powder and as pure carrageenan

    Fibre tip sensor with embedded FBG-LPG for temperature and refractive index determination by means of the simple measurement of the FBG characteristics

    Get PDF
    A novel optical fibre sensing system based on a hybrid long period grating (LPG) and Bragg grating (FBG) configuration is proposed and demonstrated experimentally. The hybrid configuration, which uses the difference in temperature and refractive index (RI) different response of a Bragg grating and a long period grating, makes it possible to discriminate simultaneously the temperature and the refractive index of different aqueous solutions. RI (1.33 RIU-1.40 RIU) and temperature (21°C-28°C) working ranges have been experimentally determined. Experimental results show that the maximum accuracy in the refractive index measurement (0.004 RIU) with temperature compensation has been achieved within the working ranges

    Developing fiber lasers with Bragg reflectors as deep sea hydrophones

    Get PDF
    The present paper will discuss the work in progress at the Department of Physics of the University of Pisa in collaboration with the IFAC laboratory of CNR in Florence to develop pressure sensors with outstanding sensitivity in the acoustic and ultrasonic ranges. These devices are based on optically-pumped fiber lasers, where the mirrors are Bragg gratings written into the fiber core

    Fibre Tip Sensor with Embedded FBG-LPG for Temperature and Refractive Index Determination by means of the Simple Measurement of the FBG Characteristics

    Get PDF
    A novel optical fibre sensing system based on a hybrid long period grating (LPG) and Bragg grating (FBG) configuration is proposed and demonstrated experimentally. The hybrid configuration, which uses the difference in temperature and refractive index (RI) different response of a Bragg grating and a long period grating, makes it possible to discriminate simultaneously the temperature and the refractive index of different aqueous solutions. RI (1.33 RIU–1.40 RIU) and temperature (21°C–28°C) working ranges have been experimentally determined. Experimental results show that the maximum accuracy in the refractive index measurement (0.004 RIU) with temperature compensation has been achieved within the working ranges

    Design and Development of an Integrated Web-based System for Tropical Rainfall Monitoring

    Get PDF
    This study is about the design and development of an integrated web-based system for tropical rainfall monitoring. The system gathers data using a network of low-cost, Android-based acoustic rainfall sensors, a nationwide infrastructure of 5 GHz wireless broadband links, and remote weather stations. The low-cost Android-based acoustic rainfall sensors are deployed at high densities over a local area and the 5 GHz wireless broadband sensors gather rainfall information on a nationwide scale. The sensor network provides information about spatial-variations that are characteristics of tropical rain rates, and complement data from the scarcely deployed remote weather stations. Gathered data is then processed and displayed on a web interface

    In-parallel polar monitoring of chemiluminescence emission anisotropy at the solid-liquid interface by an optical fiber radial array

    Get PDF
    Chemiluminescence (CL) detection is widely employed in biosensors and miniaturized analytical devices since it offers high detectability and flexible device design (there are no geometry requirements for the measurement cell, except the ability to collect the largest fraction of emitted photons). Although the emission anisotropy phenomenon for an emitting dipole bound to the interface between two media with different refractive index is well known for fluorescence, it is still poorly investigated for CL reactions, in which the excited-state reaction products can diffuse in solution before the photon emission event. In this paper, we propose a simple method for the realtime evaluation of the CL emission anisotropy based on a radial array of optical fibers, embedded in a poly(methyl methacrylate) semicylinder and coupled with a Charge-Coupled Device (CCD) camera through a suitable interface. The polar-time evolutions of the CL emission have been studied for catalyzing enzymes immobilized onto a solid surface (heterogeneous configuration) or free in solution (homogeneous configuration). Evidence of the anisotropy phenomenon is observed, indicating that the lifetime of the excited-state products of the enzyme-catalyzed reactions is shorter than the time required for their diffusion in solution at a distance at which the CL can be considered isotropic. These results open new perspectives in the development of CL-based miniaturized analytical devices

    Changes in SARS-CoV-2 Spike versus Nucleoprotein Antibody Responses Impact the Estimates of Infections in Population-Based Seroprevalence Studies.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses to the spike (S) protein monomer, S protein native trimeric form, or the nucleocapsid (N) proteins were evaluated in cohorts of individuals with acute infection (n = 93) and in individuals enrolled in a postinfection seroprevalence population study (n = 578) in Switzerland. Commercial assays specific for the S1 monomer, for the N protein, or within a newly developed Luminex assay using the S protein trimer were found to be equally sensitive in antibody detection in the acute-infection-phase samples. Interestingly, compared to anti-S antibody responses, those against the N protein appear to wane in the postinfection cohort. Seroprevalence in a "positive patient contacts" group (n = 177) was underestimated by N protein assays by 10.9 to 32.2%, while the "randomly selected" general population group (n = 311) was reduced by up to 45% relative to the S protein assays. The overall reduction in seroprevalence targeting only anti-N antibodies for the total cohort ranged from 9.4 to 31%. Of note, the use of the S protein in its native trimer form was significantly more sensitive compared to monomeric S proteins. These results indicate that the assessment of anti-S IgG antibody responses against the native trimeric S protein should be implemented to estimate SARS-CoV-2 infections in population-based seroprevalence studies.IMPORTANCE In the present study, we have determined SARS-CoV-2-specific antibody responses in sera of acute and postinfection phase subjects. Our results indicate that antibody responses against viral S and N proteins were equally sensitive in the acute phase of infection, but that responses against N appear to wane in the postinfection phase where those against the S protein persist over time. The most sensitive serological assay in both acute and postinfection phases used the native S protein trimer as the binding antigen, which has significantly greater conformational epitopes for antibody binding compared to the S1 monomer protein used in other assays. We believe these results are extremely important in order to generate correct estimates of SARS-CoV-2 infections in the general population. Furthermore, the assessment of antibody responses against the trimeric S protein will be critical to evaluate the durability of the antibody response and for the characterization of a vaccine-induced antibody response

    Sol–gel-derived glass-ceramic photorefractive films for photonic structures

    Get PDF
    Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2) glass-ceramic waveguides activated by europium ions (Eu3+). The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV)-induced refractive index change (∆n ~ −1.6 × 10−3), the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm), that make this glass-ceramic an interesting photonic material for smart optical applications

    Gene-specific inhibition of breast carcinoma in BALB-neuT mice by active immunization with rat Neu or human ErbB receptors

    Get PDF
    Employing the transgenic BALB-neuT mouse tumor model, we explored the in vivo biologic relevance of immunocompetent epitopes shared among the four ErbB receptors. The outcome of neu-mediated tumorigenesis was compared following vaccination with isogeneic normal rat ErbB2/Neu (LTR-Neu) or xenogeneic human ErbB receptors (LTR-EGFR, LTR-ErbB2, LTR-ErbB3 and LTR-ErbB4), each recombinantly expressed in an NIH3T3 murine cell background. Vaccination using rat LTR-Neu at the stage of atypical hyperplasia potently inhibited neu-mediated mammary tumorigenesis. Moreover, all human ErbB receptors specifically interfered with tumor development in BALB-neuT mice. Relative increase in tumor-free survival and reduction in tumor incidence corresponded to structural similarity shared with the etiologic neu oncogene, as rat orthologue LTR-Neu proved most effective followed by the human homologue LTR-ErbB2 and the other three human ErbB receptors. Vaccination resulted in high titer specific serum antibodies, whose tumor-inhibitory effect correlated with cross-reactivity to purified rat Neu extracellular domain in vitro. Furthermore, a T cell response specific for peptide epitopes of rat Neu was elicited in spleen cells of mice immunized with LTR-Neu and was remotely detectable for discrete peptides upon vaccination with LTR-ErbB2 and LTR-EGFR. The most pronounced tumor inhibition by LTR-Neu vaccination was associated with leukocyte infiltrate and tumor necrosis in vivo, while immune sera specifically induced cytotoxicity and apoptosis of BALB-neuT tumor cells in vitro. Our findings indicated that targeted inhibition of neu oncogene-mediated mammary carcinogenesis is conditional upon the immunization schedule and discrete immunogenic epitopes shared to a variable extent by different ErbB receptors
    • 

    corecore