586 research outputs found

    Interdependence between integrable cosmological models with minimal and non-minimal coupling

    Full text link
    We consider the relation between exact solutions of cosmological models having minimally and non-minimally coupled scalar fields. This is done for a particular class of solvable models which, in the Einstein frame, have potentials depending on hyperbolic functions and in the Jordan frame, where the non-minimal coupling is conformal, possess a relatively simple dynamics. We show that a particular model in this class can be generalized to the cases of closed and open Friedmann universes and still exhibits a simple dynamics. Further we illustrate the conditions for the existences of bounces in some sub-classes of the set of integrable models we have considered.Comment: 15 pages, v2: figures and references added, accepted for publication in CQ

    Integrable cosmological models with non-minimally coupled scalar fields

    Full text link
    We obtain general solutions for some flat Friedmann universes filled with a scalar field in induced gravity models and models including the Hilbert-Einstein curvature term plus a scalar field conformally coupled to gravity. As is well known, these models are connected to minimally coupled models through the combination of a conformal transformation and a transformation of the scalar field. The explicit forms of the self-interaction potentials for six exactly solvable models are presented here. We obtain the general solution for one of the integrable models, namely, the induced gravity model with a power-law potential for the self-interaction of the scalar field. We argue that although being mathematically in a one-to-one correspondence with the solutions in the minimally coupled models, the solutions in the corresponding non-minimally coupled models are physically different. This is because the cosmological evolutions seen by an internal observer connected with the cosmic time can be quite different. The study of a few induced gravity models with particular potentials gives us an explicit example of such a difference.Comment: 20 pages, v3: references added, accepted for publication in CQ

    Induced gravity, and minimally and conformally coupled scalar fields in Bianchi-I cosmological models

    Full text link
    We study the cosmological evolution and singularity crossing in the Bianchi-I universe filled with a conformally coupled scalar field and compare them with those of the Bianchi-I universe filled with a minimally coupled scalar field. We also write down the solution for the Bianchi-I Universe in the induced gravity cosmology.Comment: 11 pages, 3 figures, final version, to appear in Physical Review

    The deactivation of an NH3-SCR Cu-SAPO catalyst upon exposure to non-oxidizing conditions

    Get PDF
    Abstract A Cu-SAPO catalyst for NH3-SCR applications showed a significant loss of deNOx performance after exposure to oxygen-free conditions. The present work aims at elucidating the causes of the observed progressive deactivation by comparing different experimental procedures for the SCR activity tests. The adoption of an experimental protocol, which avoids the exposure to a non-oxidizing environment, ensured a stable activity of the Cu-SAPO catalyst. Moreover, treatment of the deactivated catalyst with an oxidizing mixture at 550 °C for 5 h enabled to partially recover the deNOx activity

    Direct electrification of Rh/Al2O3 washcoated SiSiC foams for methane steam reforming: An experimental and modelling study

    Get PDF
    Electrified methane steam reforming (eMSR) is a promising concept for low-carbon hydrogen production. We investigate an innovative eMSR reactor where SiSiC foams, coated with Rh/Al2O3 catalyst, act as electrical resistances to generate the reaction heat via the Joule effect. The novel system was studied at different temperatures, space velocities, operating pressures and catalyst loadings. Thanks to efficient heating, active catalyst and optimal substrate geometry, complete methane conversions were observed even at a high space velocity of 200000 Nl/h/kgcat. A specific energy demand as low as 1.24 kWh/Nm3H2, with an unprecedented energy efficiency of 81%, was achieved on a washcoated foam with catalyst density of 86.3 g/L (GHSV = 150000 Nl/h/kgcat, S/C = 4.1, ambient pressure). A mathematical model was validated against measured performance indicators and used to design an intensified eMSR unit for small scale H2 production.(c) 2023 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/)

    The Inflaton and Time in the Matter-Gravity System

    Get PDF
    The emergence of time in the matter-gravity system is addressed within the context of the inflationary paradigm. A quantum minisuperspace-homogeneous minimally coupled inflaton system is studied with suitable initial conditions leading to inflation and the system is approximately solved in the limit for large scale factor. Subsequently normal matter (either non homogeneous inflaton modes or lighter matter) is introduced as a perturbation and it is seen that its presence requires the coarse averaging of a gravitational wave function (which oscillates at trans-Planckian frequencies) having suitable initial conditions. Such a wave function, which is common for all types of normal matter, is associated with a ``time density'' in the sense that its modulus is related to the amount of time spent in a given interval (or the rate of flow of time). One is then finally led to an effective evolution equation (Schroedinger Schwinger-Tomonaga) for ``normal'' matter. An analogy with the emergence of a temperature in statistical mechanics is also pointed out.Comment: 14 pages, late

    Black hole evaporation in a spherically symmetric non-commutative space-time

    Full text link
    Recent work in the literature has studied the quantum-mechanical decay of a Schwarzschild-like black hole, formed by gravitational collapse, into almost-flat space-time and weak radiation at a very late time. The relevant quantum amplitudes have been evaluated for bosonic and fermionic fields, showing that no information is lost in collapse to a black hole. On the other hand, recent developments in noncommutative geometry have shown that, in general relativity, the effects of non-commutativity can be taken into account by keeping the standard form of the Einstein tensor on the left-hand side of the field equations and introducing a modified energy-momentum tensor as a source on the right-hand side. Relying on the recently obtained non-commutativity effect on a static, spherically symmetric metric, we have considered from a new perspective the quantum amplitudes in black hole evaporation. The general relativity analysis of spin-2 amplitudes has been shown to be modified by a multiplicative factor F depending on a constant non-commutativity parameter and on the upper limit R of the radial coordinate. Limiting forms of F have been derived which are compatible with the adiabatic approximation.Comment: 8 pages, Latex file with IOP macros, prepared for the QFEXT07 Conference, Leipzig, September 200

    Energy-Momentum Tensor of Cosmological Fluctuations during Inflation

    Full text link
    We study the renormalized energy-momentum tensor (EMT) of cosmological scalar fluctuations during the slow-rollover regime for chaotic inflation with a quadratic potential and find that it is characterized by a negative energy density which grows during slow-rollover. We also approach the back-reaction problem as a second-order calculation in perturbation theory finding no evidence that the back-reaction of cosmological fluctuations is a gauge artifact. In agreement with the results on the EMT, the average expansion rate is decreased by the back-reaction of cosmological fluctuations.Comment: 19 pages, no figures.An appendix and references added, conclusions unchanged, version accepted for publication in PR
    • …
    corecore