1,038 research outputs found
Sorbic Acid as a Wine Preservative-Its Efficacy and Organoleptic Threshold
Sorbic acid was added to wines in different concentrations to determine its effect on the inhibition of yeasts in semi sweet wines. Sorbic acid proved to be an effective inhibitor of yeast growth when used at a concentration of 200 mg/C in conjunction with a concentration of 100 mg 802/C. As the sorbic acid does not kill the yeast cells but only inhibits them it is imperative that the wine should still be filtered as sterile as possible.Sweet must should not be preserved with sorbic acid because of the danger of bacterial spoilage and the subsequent development of the so-called "geranium" odour in the wines sweetened with infected sweet must. The flavour threshold of sorbic acid itself in dry wines was determined to be between 300 and 400 mg sorbic acid/€. This is virtually double the amount recommended for inhibition, at which concentration no effect should be (nor was) encountered on the quality of the wine
An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics
The numerical simulation of acoustic waves in complex 3D media is a key topic
in many branches of science, from exploration geophysics to non-destructive
testing and medical imaging. With the drastic increase in computing
capabilities this field has dramatically grown in the last twenty years.
However many 3D computations, especially at high frequency and/or long range,
are still far beyond current reach and force researchers to resort to
approximations, for example by working in 2D (plane strain) or by using a
paraxial approximation. This article presents and validates a numerical
technique based on an axisymmetric formulation of a spectral finite-element
method in the time domain for heterogeneous fluid-solid media. Taking advantage
of axisymmetry enables the study of relevant 3D configurations at a very
moderate computational cost. The axisymmetric spectral-element formulation is
first introduced, and validation tests are then performed. A typical
application of interest in ocean acoustics showing upslope propagation above a
dipping viscoelastic ocean bottom is then presented. The method correctly
models backscattered waves and explains the transmission losses discrepancies
pointed out in Jensen et al. (2007). Finally, a realistic application to a
double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical
Lights out: training RL agents robust to temporary blindness
Agents trained with DQN rely on an observation at each timestep to decide
what action to take next. However, in real world applications observations can
change or be missing entirely. Examples of this could be a light bulb breaking
down, or the wallpaper in a certain room changing. While these situations
change the actual observation, the underlying optimal policy does not change.
Because of this we want our agent to continue taking actions until it receives
a (recognized) observation again. To achieve this we introduce a combination of
a neural network architecture that uses hidden representations of the
observations and a novel n-step loss function. Our implementation is able to
withstand location based blindness stretches longer than the ones it was
trained on, and therefore shows robustness to temporary blindness. For access
to our implementation, please email Nathan, Marije, or Pau
Studies on the Mechanisms of Microbial Adaptation to the Physical Environment
The environmental factors which affect humans and other animals also influence the microorganisms which are such an important part of our ecology. Some of the microorganisms are very closely associated with animals, living in the digestive tract and synthesizing essential nutrients for the host. For these microbes, most external physical changes are of little consequence, because they are well shielded by the animals' homeostatic systems. The vast majority of microorganisms, however, live free in nature, especially in the soil and oceans. It has been estimated that the upper 15 cm of a fertile soil may contain over 4000 kg of bacteria and fungi per hectare. These organisms are responsible for degrading the complex molecules of plants and animals when they die, eventually producing simple organics, carbon dioxide, and inorganics, which are then used for the next cycle of plant growth. It is believed that over 90 % of the biologically produced carbon dioxide results from the metabolic activity of bacteria and fungi. In addition to recycling plant nutrients, soil bacteria also provide new nutrients through 'fixation' of atmospheric nitrogen into ammonia and nitrate, the forms which can be used by plants. Microorganisms so have an enormous capacity for detoxifying both natural and man-made poisons. All of these functions of microorganisms are essential to the operation of the material cycles on Earth. This is true of all locations on the planet, regardless of the climate or other environmental factors. In fact, one of the most impressive attributes of microorganisms is their ability to adapt to every stable environment on Earth. These include such extremes as polar regions, hot springs, water saturated with salt, mountain tops, ocean depths, acid and alkaline waters, deserts, intense radioactivity, soil and water contaminated with toxic chemicals or petroleum, and areas devoid of oxygen
Time and Space Bounds for Reversible Simulation
We prove a general upper bound on the tradeoff between time and space that
suffices for the reversible simulation of irreversible computation. Previously,
only simulations using exponential time or quadratic space were known.
The tradeoff shows for the first time that we can simultaneously achieve
subexponential time and subquadratic space.
The boundary values are the exponential time with hardly any extra space
required by the Lange-McKenzie-Tapp method and the ()th power time with
square space required by the Bennett method. We also give the first general
lower bound on the extra storage space required by general reversible
simulation. This lower bound is optimal in that it is achieved by some
reversible simulations.Comment: 11 pages LaTeX, Proc ICALP 2001, Lecture Notes in Computer Science,
Vol xxx Springer-Verlag, Berlin, 200
Constraints on the geometry of the subducted Gorda Plate from converted phases generated by local earthquakes
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(2), (2021): e2020JB019962, https://doi.org/10.1029/2020JB019962.The largest slip in great megathrust earthquakes often occurs in the 10–30 km depth range, yet seismic imaging of the material properties in this region has proven difficult. We utilize a dense onshore‐offshore passive seismic dataset from the southernmost Cascadia subduction zone where seismicity in the mantle of the subducted Gorda Plate produces S‐to‐P and P‐to‐S conversions generated within a few km of the plate interface. These conversions typically occur in the 10–20 km depth range at either the top or bottom of a ∼5 km thick layer with a high Vp/Vs that we infer to be primarily the subducted crust. We use their arrival times and amplitudes to infer the location of the top and bottom of the subducted crust as well as the velocity contrasts across these discontinuities. Comparing with both the Slab1.0 and the updated Slab2 interface models, the Slab2 model is generally consistent with the converted phases, while the Slab1.0 model is 1–2 km deeper in the 2–20 km depth range and ∼6–8 km too deep in the 10–20 km depth range between 40.25°N and 40.4°N. Comparing the amplitudes of the converted phases to synthetics for simplified velocity structures, the amplitude of the converted phases requires models containing a ∼5 km thick zone with at least a ∼10%–20% reduction in S wave velocity. Thus, the plate boundary is likely contained within or at the top of this low velocity zone, which potentially indicates a significant porosity and fluid content within the seismogenic zone.This work is funded by National Science Foundation Award Numbers EAR‐1520690.2021-07-2
Inflammation-induced hepcidin-25 is associated with the development of anemia in septic patients: an observational study
Contains fulltext :
98009.pdf (publisher's version ) (Open Access)INTRODUCTION: Anemia is a frequently encountered problem during inflammation. Hepcidin is an interleukin-6 (IL-6)-induced key modulator of inflammation-associated anemia. Human sepsis is a prototypical inflammatory syndrome, often complicated by the development of anemia. However, the association between inflammation, hepcidin release and anemia has not been demonstrated in this group of patients. Therefore, we explored the association between hepcidin and sepsis-associated anemia. METHODS: 92 consecutive patients were enrolled after presentation on the emergency ward of a university hospital with sepsis, indicated by the presence of a proven or suspected infection and >/= 2 extended systemic inflammatory response syndrome (SIRS) criteria. Blood was drawn at day 1, 2 and 3 after admission for the measurement of IL-6 and hepcidin-25. IL-6 levels were correlated with hepcidin concentrations. Hemoglobin levels and data of blood transfusions during 14 days after hospitalisation were retrieved and the rate of hemoglobin decrease was correlated to hepcidin levels. RESULTS: 53 men and 39 women with a mean age of 53.3 +/- 1.8 yrs were included. Hepcidin levels were highest at admission (median[IQR]): 17.9[10.1 to 28.4]nmol/l and decreased to normal levels in most patients within 3 days (9.5[3.4 to 17.9]nmol/l). Hepcidin levels increased with the number of extended SIRS criteria (P = 0.0005). Highest IL-6 levels were measured at admission (125.0[46.3 to 330.0]pg/ml) and log-transformed IL-6 levels significantly correlated with hepcidin levels at admission (r = 0.28, P = 0.015), day 2 (r = 0.51, P < 0.0001) and day 3 (r = 0.46, P < 0.0001). Twelve patients received one or more blood transfusions during the first 2 weeks of admission, not related to active bleeding. These patients had borderline significant higher hepcidin level at admission compared to non-transfused patients (26.9[17.2 to 53.9] vs 17.9[9.9 to 28.8]nmol/l, P = 0.052). IL-6 concentrations did not differ between both groups. Correlation analyses showed significant associations between hepcidin levels on day 2 and 3 and the rate of decrease in hemoglobin (Spearman's r ranging from -0.32, P = 0.03 to -0.37, P = 0.016, respectively). CONCLUSIONS: These data suggest that hepcidin-25 may be an important modulator of anemia in septic patients with systemic inflammation
- …