39 research outputs found

    B cells Can Modulate the CD8 Memory T Cell after DNA Vaccination Against Experimental Tuberculosis

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud \ud Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown.\ud \ud \ud \ud Methods\ud \ud In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge.\ud \ud \ud \ud Results\ud \ud \ud In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice.\ud \ud \ud \ud Conclusions\ud \ud These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.We are thankful to Ana Paula Masson and Izaíra T Brandão for providing the DNA vaccine and recombinant protein. This study was supported by a FAPESP fellowship (05/030873) to LPA.We are thankful to Ana Paula Masson and Izaíra T Brandão for providing the DNA vaccine and recombinant protein. This study was supported by a FAPESP fellowship (05/03087-3) to LPA

    Resposta imune a doenças infecciosas

    Get PDF
    The interaction between pathogens and immune system occurs in a dynamic way with sophisticate mechanisms of evasion and immune control of infection, respectively. Therefore, it is a sine qua non condition to understand the complexity of this relationship in order to developed new strategies for infection control. Although the immune system has specialized mechanisms to control infection, different conditions involved in the interaction between immune system and pathogens can or cannot determine the development of disease. Interestingly, a protective immune response against one kind of parasite may not be protective against another. So, each pathogen presents a specific way of interaction with the immune system. The development of research in this area has contributed with a better comprehension of the immune system and pathogen relationship and opened perspective in improving the treatment with the development of new drugs and/or vaccines.A interação do sistema imune com os agentes infecciosos ocorre de uma maneira dinâmica, com mecanismos de controle da infecção e de escape sofisticados. A compreensão dessa complexidade é condição sine qua non para que se estabeleça uma ação total no controle dessas infecções. Embora a resposta imune desenvolvida para controle das diferentes infecções apresente certas particularidades, em geral, apresentam também mecanismos comuns. A priori os mecanismos podem ser redundantes, no entanto existe uma gama de sutilezas entre a interação hospedeiro-parasita que define o estabelecimento ou não de doença. Por outro lado, não se pode deixar de alertar que melhores condições de saneamento básico diminuiriam a incidência de inúmeras doenças. A classificação de uma resposta imune protetora tem que ser avaliada sempre em relação ao tipo de agente agressor, pois um mecanismo protetor conta um vírus pode não ser essencial contra uma bactéria extracelular. De qualquer forma, o avanço na pesquisa com diferentes patógenos tem contribuído para uma melhor compreensão da resposta imune decorrente da interação entre o hospedeiro e parasita o que pode resultar no desenvolvimento de novas drogas e vacinas

    Tissue distribution of DNA-Hsp65/TDM-loaded PLGA microspheres and uptake by phagocytic cells

    Get PDF
    This study aimed to demonstrate that microspheres, used as delivery vehicle of DNA-Hsp65/TDM [plasmid DNA encoding heat shock protein 65 (Hsp65) coencapsulated with trehalose dimycolate (TDM) into PLGA microspheres], are widely spread among several organs after intramuscular administration in BALB/c mice. In general, we showed that these particles were phagocytosed by antigen presenting cells, such as macrophages and dendritic cells. Besides, it was demonstrated herein that draining lymph node cells presented a significant increase in the number of cells expressing costimulatory molecules (CD80 and CD86) and MHC class II, and also that the administration of the DNA-Hsp65/TDM and vector/TDM formulations resulted in the up-regulation of CD80, CD86 and MHC class II expression when compared to control formulations (vector/TDM and empty). Regarding the intracellular trafficking we observed that following phagocytosis, the microspheres were not found in the late endosomes and/or lysosomes, until 15 days after internalization, and we suggest that these constructions were hydrolysed in early compartments. Overall, these data expand our knowledge on PLGA [poly (lactic-co- glycolic acid)] microspheres as gene carriers in vaccination strategies, as well as open perspectives for their potential use in clinical practice

    Potential of AKR1B10 as a Biomarker and Therapeutic Target in Type 2 Leprosy Reaction

    Get PDF
    The AKR1B10 (aldo-keto reductase family 1 member B10) gene has important functions in carcinogen-induced neoplasia. AKR1B10 is also expressed in type 2 reaction leprosy patients (R2). We measured the expression of AKR1B10 in the skin lesions of patients with leprosy by immunohistochemistry from biopsies that encompassed the spectrum of types of leprosy, based on the Ridley and Jopling classification [10 samples each of tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), and borderline lepromatous (BL) lesions; four samples of lepromatous lesions (LL)], reactional leprosy [14 samples of type 1 Reaction (R1) and 10 samples of type 2 Reaction (R2)], and biopsies from 9 healthy control (HC) subjects. In addition, 46 lepromatous lesions (BL and LL), 45 lepromatous lesions in regression, and 115 R2 lesions were included. Eight of 10 R2 samples (80%), 3 of 46 active BL and LL samples (6%), 23 of 45 BL and LL samples in regression (51%), and 107 of 115 R2 samples (93%) were positive for AKR1B10, differing significantly between all groups (p < 0.05). AKR1B10 expression was highest in the cytoplasm of macrophages. Thus, AKR1B10 is overexpressed on the lepromatous side (BL and LL) in samples that are in regression, especially type 2 reaction-associated lesions, rendering it a potential marker of type 2 reactional episodes of leprosy and a target of drugs against reactional episodes

    Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally.</p> <p>Results</p> <p>We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg).</p> <p>Conclusion</p> <p>Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.</p

    Endocytosis of DNA-Hsp65 Alters the pH of the Late Endosome/Lysosome and Interferes with Antigen Presentation

    Get PDF
    BACKGROUND: Experimental models using DNA vaccine has shown that this vaccine is efficient in generating humoral and cellular immune responses to a wide variety of DNA-derived antigens. Despite the progress in DNA vaccine development, the intracellular transport and fate of naked plasmid DNA in eukaryotic cells is poorly understood, and need to be clarified in order to facilitate the development of novel vectors and vaccine strategies. METHODOLOGY AND PRINCIPAL FINDINGS: Using confocal microscopy, we have demonstrated for the first time that after plasmid DNA uptake an inhibition of the acidification of the lysosomal compartment occurs. This lack of acidification impaired antigen presentation to CD4 T cells, but did not alter the recruitment of MyD88. The recruitment of Rab 5 and Lamp I were also altered since we were not able to co-localize plasmid DNA with Rab 5 and Lamp I in early endosomes and late endosomes/lysosomes, respectively. Furthermore, we observed that the DNA capture process in macrophages was by clathrin-mediated endocytosis. In addition, we observed that plasmid DNA remains in vesicles until it is in a juxtanuclear location, suggesting that the plasmid does not escape into the cytoplasmic compartment. CONCLUSIONS AND SIGNIFICANCE: Taken together our data suggests a novel mechanism involved in the intracellular trafficking of plasmid DNA, and opens new possibilities for the use of lower doses of plasmid DNA to regulate the immune response

    TBX21-1993T/C (rs4794067) polymorphism is associated with increased risk of chronic periodontitis and increased T-bet expression in periodontal lesions, but does not significantly impact the IFN-g transcriptional level or the pattern of periodontophatic bacterial infection

    No full text
    Th1-polarized host response, mediated by IFN-γ, has been associated with increased severity of periodontal disease as well as control of periodontal infection. The functional polymorphism TBX21-1993T/C (rs4794067) increases the transcriptional activity of the TBX21 gene (essential for Th1 polarization) resulting in a predisposition to a Th-1 biased immune response. Thus, we conducted a case-control study, including a population of healthy controls (H, n = 218), chronic periodontitis (CP, n = 197), and chronic gingivitis patients (CG, n = 193), to investigate if genetic variations in TBX21 could impact the development of Th1 responses, and consequently influence the pattern of bacterial infection and periodontitis outcome. We observed that the polymorphic allele T was significantly enriched in the CP patients compared to CG subjects, while the H controls demonstrated and intermediate genotype. Also, investigating the putative functionality TBX21-1993T/C in the modulation of local response, we observed that the transcripts levels of T-bet, but not of IFN-γ, were upregulated in homozygote and heterozygote polymorphic subjects. In addition, TBX21-1993T/C did not influence the pattern of bacterial infection or the clinical parameters of disease severity, being the presence/absence of red complex bacteria the main factor associated with the disease status and the subrogate variable probing depth (PD) in the logistic regression analysis

    An Interleukin-1β (IL-1β) Single-Nucleotide Polymorphism at Position 3954 and Red Complex Periodontopathogens Independently and Additively Modulate the Levels of IL-1β in Diseased Periodontal Tissues▿

    No full text
    Inflammatory cytokines such as interleukin-1β (IL-1β) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-1β mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-1β promoter single-nucleotide polymorphism at position 3954 [IL-1β(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1β levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects (n = 175) and the possible correlations with the clinical parameters of the disease. IL-1β(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1β levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1β(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1β(3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1β levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1β(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1β in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1β(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1β in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome
    corecore