139 research outputs found

    Theory of second harmonic generation in few-layered MoS2

    Full text link
    Recent experimental results have demonstrated the ability of monolayer MoS2_2 to efficiently generate second harmonic fields with susceptibilities between 0.1 and 100 nm/V. However, no theoretical calculations exist with which to interpret these findings. In particular, it is of interest to theoretically estimate the modulus of the second harmonic response, since experimental reports on this differ by almost three orders of magnitude. Here, we present single-particle calculations of the second harmonic response based on a tight-binding band structure. We compare directly with recent experimental findings and include in the discussion also spectral features and the effects of multiple layers

    The Length Distribution of Class I-Restricted T Cell Epitopes Is Determined by Both Peptide Supply and MHC Allele-Specific Binding Preference

    Get PDF
    HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8+ T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8+ T cell epitopes.Fil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: McMurtrey, Curtis. Oklahoma State University; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Bardet, Wilfried. Oklahoma State University; Estados UnidosFil: Osborn, Sean C.. Oklahoma State University; Estados UnidosFil: Kaever, Thomas. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Hildebrand, Willliam H.. Oklahoma State University; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Instituto de Investigaciones BiotecnolĂłgicas ; Argentina. Universidad Nacional de San MartĂ­n; ArgentinaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unido

    Automated benchmarking of peptide-MHC class I binding predictions

    Get PDF
    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.Fil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Lund, Ole. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; Argentin

    KEYNOTE - D36: Personalized immunotherapy with a neoepitope vaccine, EVX-01 and pembrolizumab in advanced melanoma

    Get PDF
    Despite improvements made with checkpoint inhibitor (CPI) therapy, a need for new approaches to improve outcomes for patients with unresectable or metastatic melanoma remains. EVX-01, a personalized neoepitope vaccine, combined with pembrolizumab treatment, holds the potential to fulfill this need. Here we present the rationale and novel design behind the KEYNOTE - D36 trial: an open label, single arm, phase II trial aiming to establish the clinical proof of concept and evaluate the safety of EVX-01 in combination with pembrolizumab in CPI naive patients with unresectable or metastatic melanoma. The primary objective is to evaluate if EVX-01 improves best overall response after initial stable disease or partial response to pembrolizumab treatment, in patients with advanced melanoma. The novel end points ensure a decisive readout which may prove helpful before making major investments in phase III trials with limited phase I data. Clinical Trial Registration: NCT05309421 (ClinicalTrials.gov)

    DTU Synthetic Promoter Library Standard

    Get PDF
    The purpose of this RFC is to outline a method for generating a BioBrick compatible Synthetic Promoter Library (SPL) within bacteria in order to fine-tune the expression of BioBrick parts and devices

    The biomolecular characterization of a finger ring contextually dated to the emergence of the Early Neolithic from Syltholm, Denmark.

    Get PDF
    We present the analysis of an osseous finger ring from a predominantly early Neolithic context in Denmark. To characterize the artefact and identify the raw material used for its manufacture, we performed micro-computed tomography scanning, zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting, as well as protein sequencing by liquid chromatography tandem mass spectrometry (LC-MS/MS). We conclude that the ring was made from long bone or antler due to the presence of osteons (Haversian canals). Subsequent ZooMS analysis of collagen I and II indicated that it was made from Alces alces or Cervus elaphus material. We then used LC-MS/MS analysis to refine our species identification, confirming that the ring was made from Cervus elaphus, and to examine the rest of the proteome. This study demonstrates the potential of ancient proteomics for species identification of prehistoric artefacts made from osseous material
    • …
    corecore