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We present the analysis of an osseous finger ring from a
predominantly early Neolithic context in Denmark. To
characterize the artefact and identify the raw material used for
its manufacture, we performed micro-computed tomography
scanning, zooarchaeology by mass spectrometry (ZooMS)
peptide mass fingerprinting, as well as protein sequencing by

© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.


http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191172&domain=pdf&date_stamp=2020-01-22
mailto:tztjensen@bio.ku.dk
mailto:hschroeder@bio.ku.dk
https://doi.org/10.6084/m9.figshare.c.4799625
https://doi.org/10.6084/m9.figshare.c.4799625
http://orcid.org/
http://orcid.org/0000-0002-7166-7975
http://orcid.org/0000-0003-0763-7592
http://orcid.org/0000-0003-0378-1626
http://orcid.org/0000-0001-6415-3506
http://orcid.org/0000-0002-4445-5520
http://orcid.org/0000-0003-4226-5501
http://orcid.org/0000-0002-6743-0270
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

liquid chromatography tandem mass spectrometry (LC-MS/MS). We conclude that the ring was made
from long bone or antler due to the presence of osteons (Haversian canals). Subsequent ZooMS analysis
of collagen I and II indicated that it was made from Alces alces or Cervus elaphus material. We then
used LC-MS/MS analysis to refine our species identification, confirming that the ring was made from
Cervus elaphus, and to examine the rest of the proteome. This study demonstrates the potential of ancient
proteomics for species identification of prehistoric artefacts made from osseous material.

1. Introduction

Several excavations at Syltholm near Redbyhavn on the island of Lolland, Denmark, have revealed an
exceptionally well-preserved archaeological assemblage belonging to the Ertebelle (ca 7350-5950 cal BP)
and Early Funnel Beaker periods (ca 5950-4750 cal BP) [1]. Among other things, the assemblage contains
numerous artefacts made from organic material, such as wood, bone and antler, as well as several exotic
objects, including a T-shaped antler axe [2], a Danubian shaft-hole axe made of amphibolite as well as
pieces of Arkadenrand-type ceramics. These finds suggest connections with Neolithic societies of
northern Germany and central Europe. One of the more spectacular finds from one Syltholm site (906-II)
is one half of an osseous finger ring found in 2014 at the northernmost section of this site (figure 1).

The finger ring (find no. X2784) is broken, but is otherwise perfectly preserved and displays excellent
handicraft, design and finish (figure 1d). It measures 2.4 cm in diameter, large enough to suggest that it
might have been worn by an adult male. The exterior is finely polished, with only microscopic scratches
and no use-wear visible, while the interior still shows well-preserved traces of carving, suggesting that it
was either barely worn, or that it broke during manufacture. The ring was found in a layer containing a
large amount of wooden artefacts, which have been directly dated to between ca 6300 and 5500 cal BP
(table 1 and figure 2), spanning the period(s) of activity at the site. The ring itself was found close to
a broken wooden spear made of ash (X4955, table 1), which yielded a date of 5983-5750 cal BF, and
while we were unable to obtain a direct date for the ring itself (due to sampling limitations), we
propose that these two contextually associated artefacts are coeval.

Finger rings made of osseous material first appear in large quantities during the Anatolian Neolithic
[3], and later over a large area of southern and central Europe. On the Iberian peninsula, numerous finger
rings attributed to the Neolithic Cardial culture are known [4-7]. Further north, bone rings are present in
deposits from the Rubané culture, e.g. at Mulhouse-Est and in the wider Alsace area (Linear band
ceramic (LBK)) [8]. Sporadic occurrences of rings appear from the LBK/Rubané periods and
subsequent periods in north and central Europe. In The Netherlands, at Ypenburg 4, a bone ring was
found in a child’s burial dated to the Middle Neolithic [9]. In northern Germany, rings were found at
the sites of Oldenburg Dannau LA 191 and at Wangels, both are dated to the Middle Neolithic (S.
Hartz 2018, personal communication). In addition, a limited number of rings dated to the Danish and
Swedish Early Neolithic have been found, predominantly in dolmens [10,11]. These artefacts are
unlikely to be finger rings due to the large shank depth. The ring from Syltholm is the only example
known from the Early Neolithic in Denmark, apart from another broken ring from the shell-midden
site at Nederst in Jutland, which was found alongside a ring-preform. Both Nederst artefacts were
manufactured from wild boar (Sus scrofa) tusk [12], as a thin layer of enamel is visible on the preform
surface [12] (E. Kannegaard 2018, personal communication).

The composition of the Syltholm ring is not as readily identifiable as the Nederst ring, and we
therefore carried out a series of analyses to identify and characterize the raw material used for its
manufacture. X-ray micro-computed tomography (micro-CT) imaging was performed to create
high-resolution scans of the ring, while zooarchaeology by mass spectrometry (ZooMS) peptide
mass fingerprinting and liquid chromatography tandem mass spectrometry (LC-MS/MS) protein
sequencing were used for species identification and further characterization. ZooMS is often
chosen for archaeological research because it can provide a rapid, cost effective species
identification for samples containing collagen (i.e. bone, antler and skin) [13,14]. However, at
present ZooMS is unable to separate the two species of cervids Cervus elaphus (red deer, hereafter
referred to as Cervus) and Alces alces (European elk or North American moose, hereafter referred
to as Alces). Therefore, we also used LC-MS/MS protein sequencing to refine and confirm species
identification. We demonstrate the potential of a combined approach for the analysis of prehistoric
artefacts made from osseous material and add to the understanding of this hitherto under-studied
finds category.
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Figure 1. (a) Location of the site on the southern part of Lolland, Denmark. (b) Overview of site MLF906-I where the ring was
found in the northern part. (c) Digitized archaeological wood and stones found in a small section of the site, from where the ring
was found. Digitization based on seven three-dimensional models obtained by Structure from Motion. (d) Photograph of the ring.

2. Material and methods

2.1. The ring in context

Up until 1872 Syltholm was submerged, but after severe flooding on Lolland a reclamation project was
undertaken. The area was dammed, thus preserving the inundated Stone Age landscape below. Around
7000 m* of prehistoric seabed was exposed at the sites MLF906-I and MLF906-1I, with the underlying
landscape located 1.50-3.00 m below the surface. By the end of the excavation campaign, a total of
80000 m> will have been excavated (at all 20 sites) out of ca 187 hectares that will become a
construction site for the Femern Belt connection [15]. During the Late Mesolithic and Early Neolithic,
MLF906-II was located in a shallow brackish lagoon protected from the open sea to the south by
shifting sandy barrier islands. Preservation of the site varies according to the degree of shelter
provided by the barrier islands; however, the preservation of organic material (wood, bone and antler)
is generally very good. Out of the 20 sites excavated to date, the majority of in situ finds were
uncovered in the reed zone along the banks of the littoral lagoon. The finds were deposited in a
coarse brown gyttja varying in thickness (10-50 cm), with no apparent stratigraphy. The layer on top
of the gyttja is a clearly defined transgression horizon consisting of sand, shells and vast amounts of
water rolled artefacts, suggesting an erosive milieu. Above this layer follows a layer of detritus gyttja,
with no archaeological remains, and then a thick layer of sand.

2.2. Radiocarbon dating

Direct dating of the ring was not possible due to sampling limitations. However, 70 radiocarbon dates of
various artefacts from the site (table 1) were commissioned as part of the wider project carried out by the
Museum Lolland-Falster. The radiocarbon measurements were carried out at the Aarhus AMS Centre
(AARAMS) at the University of Aarhus, Denmark. Wood samples were pretreated using a standard
acid-base-acid procedure (1 M HCI for 1 h at 80°C, followed by 1 M NaOH for 3 h also at 80°C, and
finally left overnight in 1 M HCI at room temperature). The pretreatment for bone samples followed a
modified Longin procedure [16-18]. Bone minerals were dissolved using 1 M HCI at 4°C for several
days followed by removal of humic substances using 0.2 M NaOH, also at 4°C. Subsequently, the
extracted collagens were gelatinized in 0.01 M HCI at 58°C overnight. The collagen extracts were
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Figure 2. Probability distributions of the 15 radiocarbon samples found in close proximity to the ring. The coloured probability
distributions are the result of a simple Bayesian model assuming all samples to originate from the same phase of activity.
Onset and termination of the phase are indicated with black probability distributions. The light green probability distribution is
the date we propose for the ring as well, based on the proximity of the spear to the ring. KDE model of all 70 "C dates
indicating a single inferred period of archaeological activity at site in general.

ultra-filtered and the resulting greater than 30 kDa collagen fraction was used for radiocarbon analysis.
The uncalibrated dates were calibrated using Oxcal v.4.3 and the IntCall3 calibration curve [19,20] and
are listed in electronic supplementary material, SI 2 [21].

2.3. Imaging/computed tomography scanning

Micro-CT was used to examine the ring using the commercial Zeiss Xradia410 versa system. The ring was
rotated 360° in 1601 steps taking a picture at each step using a pre-voltage of 80 kV and a power of 10 W.
Two measurements with different pixel resolutions were performed at 32.3 and 13.5 pm. The three-
dimensional volume was reconstructed using the software provided with the instrument system
‘Reconstructor’, which is based on a Feldkamp-Davis-Kress algorithm [22]. The resulting three-
dimensional volumes are cylinders with a diameter and height of 3.2 cm and 1.35cm, respectively,
corresponding to the different pixel resolutions, containing different amounts of the object. Visualization
was performed using Avizo 9.7 (Thermo Fisher Scientific). The volume investigated with high-resolution
X-ray micro-CT has been segmented into elements of the bone (shown in transparent grey) and porosity in
the bone (shown in blue). The different levels of blue are a result of the amount of transparency.

2.4. Sampling, protein extraction, enzymatic digestion and peptide purification

The artefact surface was decontaminated using 5% bleach followed by 80% ethanol and subsequently
11 mg of bone from one of the fracture planes of the ring was removed using a sterile scalpel. The
sampling and protein extraction of the ring were conducted in the dedicated clean laboratories
facilities at the Centre for GeoGenetics, University of Copenhagen, Denmark.

To explore the potential for proteomically discriminating between Cervus antler and bone in ancient
samples, a sample each of both modern Cervus bone and antler were collected from the Zoological
Museum of Denmark. These samples were taken from a specimen that was defleshed by heating it in
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water for 3 days at ca 65°C. This experimentally heated extant sample is more comparable to the ring [ 6 |
sample than fresh bone or antler. The two reference samples from Cervus antler and bone (weighing
approx. 15mg) were subsequently sampled and extracted in a dedicated proteomics laboratories at
the Section for Evolutionary Genomics, University of Copenhagen.

The protein extractions were based on a minimally destructive protocol published by van Doorn et al.
[23] with the following modifications: The samples were incubated in 100 pl of 50 mM NHHCO;
(Sigma) for 16 h at ambient temperature. Samples were then agitated using a vortex mixer for 15s
before centrifugation at 13000 r.p.m. for 1 min, the supernatant was discarded. This step acts as a
wash to limit contamination from the burial environment. After, two different extractions were
performed for the ring (Extraction 1 and 2), while the reference samples were extracted according to
the Extraction 1 protocol. Extraction 2 was performed to remove humic acids that could have
contaminated the artefact. Extraction 1: 100 pl of 50 mM NH,HCO; was added to the sample before
incubation at 65°C for 1h, the supernatant (Extraction 1) was collected. Extraction 2: the remaining
sample was washed three times with 100 pl of 0.1 M NaOH at 4°C and subsequently incubated in
100 ul of 50 mM NH4HCO; at 65°C for 1h, the supernatant (Extraction 2) was collected. Fifty
microlitres of each extraction were transferred to a separate 1.5 ml Eppendorf tube, 1 ul of sequencing
grade trypsin (0.4 pg pl™") (Promega) was added to each followed by incubation at 37°C for 16 h.
After digestion, the extractions were centrifuged at 13000 r.p.m. for 1 min before acidification to less
than pH 2 using 5% (vol/vol) trifluoroacetic acid (TFA, Sigma Aldrich). Purification was performed
using C18 reverse phase resin ZipTips (PierceTM) according to the manufacturer’s instruction, and the
peptides were eluted with 50 pl of 50% acetonitrile (ACN) (Sigma Aldrich)/0.1% TFA (vol/vol).

*sosi/Jeunof/610Guiysgnd/aposjedos
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2.5. ZooMS peptide mass fingerprinting

Peptide eluates of the ring were co-crystallized with a-cyano-4-hydroxycinnamic acid (Sigma Aldrich)
matrix solution (50% ACN/0.1% TFA (vol/vol)) at a ratio of 1:1 (1 pl:1 pl). Mass spectrometry was
performed using a Bruker Ultraflex III (Bruker Daltonics) matrix-assisted laser desorption/ionization
time of flight mass spectrometer (MALDI-TOF-MS) run in reflector mode with laser acquisition set to
1200 and acquired over an m/z range of 800-3200. The generated spectral output was converted to
TXT and was analysed using the open-source software mMass v.5.5.0 [24]. The triplicate raw files
were merged, and then peak picked with an S/N threshold of 4. MALDI-TOF-MS was performed at
Centre for Excellence in Proteomics at the University of York, UK.

2.6. Liquid chromatography tandem mass spectrometry

The leftover peptide eluates of the ring sample were evaporated to dryness using a vacuum concentrator
(Eppendorf, Hamburg, Germany), and transferred to the Novo Nordisk Foundation Center for Protein
Research, University of Copenhagen for LC-MS/MS analysis on a EASY-nLC 1200 (Proxeon, Odense,
Denmark) coupled to a Q Exactive HF-X (Thermo Scientific, Bremen, Germany). The dried peptides
from the two ring extractions were resuspended in 100 pl of 80% ACN and 0.1% formic acid (FA),
and 15 pl of each of the two ring sample extractions were combined. The combined sample was
vacuum centrifuged at 45°C until approximately 3 pl was left, and was then rehydrated with 10 pl of
0.1% TFA, 5% ACN. Protein concentration of elutions was measured by UV absorbance at 205 nm
using a Nanodrop (Thermo, Wilmington, DE, USA). The volume required for approximately 2 pg of
protein per sample was placed in separate wells on a new 96-well plate and topped up to 30 pl using
40% ACN and 0.1% FA. They were then vacuum centrifuged and resuspended as above, with 5 pl of
sample analysed by LC-MS/MS. The LC-MS/MS parameters were the same as previously used for
palaeoproteomic samples [25], in short: MS1: 120 k resolution, maximum injection time (IT) 25 ms,
scan target 3E6. MS2: 60 k resolution, top 10 mode, maximum IT 118 ms, minimum scan target 3E3,
normalized collision energy of 28, dynamic exclusion 20 s, and isolation window of 1.2 m/z.

The Thermo RAW files generated were then searched using the software MaXQUANT (v. 1.6.2.6a or
v. 1.6.3.4) [26]. The database was prepared using previously published type 1 collagen sequences from
Cervus elaphus and Alces alces [27] (table 2). Missing amino acids in the Alces and Cervus collagen sequences
were substituted with ones from the same positions from the Bos taurus sequence (obtained from UniProt,
20-07-18; electronic supplementary material, SI 1). Furthermore, in order to identify proteins in addition to
collagen type 1, all protein sequences available for Cervus elaphus were downloaded from UniProt (20-07-
18). Unfortunately, no other proteins for Alces have, thus far, been uploaded to UniProt. MaxQuant
settings were as follows. Digestion mode was set to semispecific for Trypsin, to account for possible



Table 2. Identified Cervus elaphus peptides based on published collagen sequences from [27].

missed MQ matched
sequence length cleave Da (] score spectra
PGEVGPPGPPGPAGEK 16 0 1441.7201 2 2862 11
© GETGPAGRPGEVGPPGPPGPAGEK 24 1 21670658 23 27646 9
e ey
GAPGPDGNNGAQGPPGPQGVQGGK 24 0 212997 23 31991 9
St s

additional hydrolytic cleavages occurring during diagenesis. Variable modifications were: oxidation (M),
Acetyl (Protein N-term), Deamidation (NQ), GIn — pyro-Glu, Glu — pyro-Glu and Hydroxyproline. Fixed
modifications were: Carbamidomethyl (C). The remaining settings were set to the program defaults, apart
from Min. score for unmodified and modified peptides searches, which were both set to 60. Proteins were
considered confidently identified if at least two razor+unique peptides covering distinct areas of the
sequence were recovered (a razor peptide is a peptide which is assigned to the matching protein group
with the highest number of peptide identifications and those uniquely assigned to that protein group).
MS/MS spectra were assessed manually for confident identification, and peptides from the Cervus elaphus
Uniprot protein database were searched against the NCBI database using the BLASTp tool (http://blast.
ncbi.nlm.nih.gov/Blast.cgi, [28]) to determine species specificity. In addition, the samples were searched
against the MaxQuant contaminant database that identifies proteins which may be present due to sample
handling and laboratory analysis. Any protein not considered authentic to the ring (i.e. keratins from skin,
bovine serum albumin (used as a laboratory standard)) was not included in further analysis except as a
comparison for deamidation levels. Deamidation was assessed using publicly available code [25].

3. Results

3.1. Radiocarbon dates

The 15 calibrated radiocarbon dates, retrieved from close proximity to the ring, revealed an age
distribution spanning the Late Ertebolle and the Early Neolithic periods (table 1). A harpoon (X4633)
made from roe deer (Capreolus capreolus) antler produced the oldest date. The date of this artefact is in
good agreement with directly and indirectly dated specimens of similar typology and raw material
[29]. The collagen yield of the harpoon sample was 5.1% and it yielded stable isotope values
(6"°C=-24.1%0, §'""N=4.4%0 and C/N=3.3) consistent with already published archaeological roe
deer values in Denmark [30]. The remaining dated material was not typologically dated to a specific
cultural period. The dates demonstrate that the site was frequented both before and after the
Mesolithic/Neolithic transition, indicating that the site was continuously occupied during this
transitional period. The usage period of the site was estimated using a simple Bayesian model
assuming all finds to originate from a single phase of activity (figure 2). The onset of activity at the
site is estimated to be ca 6060 cal BP (6173-5962 20) and the activity is suggested to end ca 5590 cal BP
(5649-5512 20). The harpoon was excluded from the model due a low statistical agreement in the
Bayesian model [17]. The reason for this is unknown as all collagen quality parameters are within
expected ranges; however, it is possible that the harpoon was redeposited. The ring dates to the main
occupation period of the site (ca 6060 cal BP-ca 5590 cal BP). The ash (Fraxinus excelsior) spear found
closest to the ring returned a date of 5983-5750 cal BP (5128 +35'*CyrBP). Due to their close
contextual and stratigraphic association, we propose that the ring has a similar date, but we cannot
rule out that the ring is Late Mesolithic. However, as shown in the kernel density estimation (KDE)
model, which includes an additional 55 dates from the surrounding area, activity at the site in general
peaks during the Early Neolithic (figure 2).

3.2. Imaging/computed tomography scanning

Micro-CT imaging revealed the presence of many evenly spaced circular pores (figure 3a—d). The
frequency and morphology of these pores indicate that they are osteons or Haversian canals.
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2 mm

Figure 3. Micro-CT scan. (a) Full field of view of volume rendering, (b) transverse slice showing a few small black pores assumed to
be Volkmann’s canals, () cut along the middle of the volume rendering, (d) slice along showing several small black pores assumed
to be osteons, (e) network of osteons arranged longitudinally and Volkmann’s canals aligned perpendicular to the latter (in blue).

Additionally, Volkmann’s canals, which are perpendicular connections between Haversian canals [31],
can be seen in figure 3¢ and in the rendered supplementary animation (electronic supplementary
material, video S1). The diameter of osteons in antler ranges from 100 to 225 pm, similar to those
found in bovine femur [32]. By contrast, enamel only contains nanopores, and tubules in dentine and
ivory (mostly composed of dentine) are approximately 1-2pm in diameter [33]. We therefore
conclude that the ring was manufactured from antler or bone, rather than enamel or dentine.
Unfortunately, distinguishing archaeological antler from bone, where only the compact bone is
present, using micro-CT scanning is problematic and inconsistent [34]. This is because the
identification is based on subtle size differences in the diameter of the osteons, which are affected by
diagenesis [34,35].

3.3. ZooMS peptide mass fingerprinting

To identify the species used to manufacture the Syltholm ring, we performed ZooMS peptide mass
fingerprinting by MALDI-TOF-MS on the two extracts. The spectral outputs revealed a series of
isotope distributions corresponding to the mass of tryptic peptide products within a range of 1105
3101 Da. Peptide masses previously reported to be unique for Cervus and Alces collagen 1 (COL1)
were observed with high intensity [27,36] (figure 4). However, these two closely related species cannot
be separated at present using ZooMS.

The two extraction methods showed some differences in terms of peptide count as well as intensity.
Extraction 1 showed greater intensity peaks of lower molecular weight peptides than extraction
2. However, spectral data from extraction 2 showed greater intensity of a large portion of the higher
molecular weight peptides. The reason for this small difference remains unknown. Given the spectral
similarity between the two extractions, it is likely that the artefact was not contaminated with humic
acids from the environment (figure 4).
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Figure 4. ZooMS results. MALDI-TOF-MS spectral output visualized in mMass (v.5.5.0) Extraction 1 and 2 flipped. Peptides unique to
Cervus and Alces are highlighted in red.

3.4. Cervidae species identification by Liquid chromatography tandem mass spectrometry

In order to differentiate between Cervus and Alces, we performed LC-MS/MS analysis of the
combined protein extracts. While the collagen type 1 (al and a2) chains in Cervus and Alces are
highly conserved, three known SAPs (single amino acid polymorphisms) exist and can be used
to separate these species. The sites are position 741 P (Cervus elaphus) or A (Alces alces) on the ol
chain, and 454 P (Cervus elaphus) or 1/L (Alces alces), and 749 S (Cervus elaphus) or T (Alces alces)
on the a2 chain. Using a MaxQuant search of our custom database, we identified peptides that
map uniquely to the Cervus sequence at all three positions (two of which are shown in figure 5
as well as in table 2).

3.5. Additional proteins detected in the Syltholm ring

In addition to COL1, we identified 14 other endogenous proteins using LC-MS/MS excluding
contaminants (electronic supplementary material, SI 3). These were additional collagens (collagen type 3
al (COL3A1), collagen type 11 (COL11A2) and collagen type 12 a1 (COL12A1)), blood proteins, such as
immunoglobulin gamma-1 heavy chain (IGHG1), serum albumin (ALB), apolipoprotein A-I (APOA1),
and nucleobindin 1 (NUCBI1), and additional extracellular matrix proteins, such as osteocalcin (BGLAP),
alpha 2-HS glycoprotein (AHSG), pigment epithelium-derived factor/serpin family F member 1
(SERPINF1), thrombospondin 1 (THBS1), biglycan (BGN), secreted phosphoprotein 2 (SPP2) and
periostin (POSTN). In some cases, these proteins were identified specifically to Cervus (AHSG, IGHGI)
or Cervus/Odocoileus virginianus (white-tailed deer) (SERPINF1, APOA1) when compared to all publicly
available sequences for these proteins (which do not include sequences specific to Alces). Since white-
tailed deer are native to the Americas, they can be excluded from species identification in this context.
However, since the corresponding Alces sequences are not available, it cannot be ruled out that these
may also match this species, and therefore the results reflect current data availability. For the other
identified proteins, we recovered peptides that were less species-specific (electronic supplementary
material, SI 3).
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Figure 5. Example of two peptides (a,b) from the MS/MS output from MaxQuant, containing SAPs unique for Cervus (marked in
grey). Panel (a) is located on the collagen 1 o-1 sequence, while (b) is located on the collagen 1 -2 and both can confidently,
based on the y and b ion series, be identified as Cervus.

3.6. Modern bone and antler proteomes

The experimentally heated extant bone and antler samples yielded 18 and 29 proteins, respectively
(electronic supplementary material, SI 4). Even though they were modern samples, the same
requirement of at least two razor+unique peptides for identification was followed. Both samples
unsurprisingly contained collagens, namely COL1, COL3A1 and collagen type 5 ol (COL5A1). Blood
proteins were highly represented, especially in the antler. AHSG, SERPINF1, ALB, NUCB1 and
tetronectin (CLEC3B) were found in both the antler and bone, whereas haemoglobin (HBB),
antithrombin-III/serpin family C member 1 (SERPINC1), vitronectin (VIN), immunoglobulin lambda-
1 light chain (IGL), serpin family D member 1 (SERPIND1) and APOA1 were found in the antler
sample only. In addition, at least nine extracellular proteins were found in both the bone and antler
samples: lumican (LUM), decorin (DCN), chondroadherin (CHAD), olfactomedin-like protein 1

201161 :2 s uado 205 %y sosyjeumolbioSusiqndanosiefor g



shared proteins

antler bone

ring
samples total proteins
antler/bone/rin 10 BGN, ALB, BGLAP, COL3A1, COL1,
& NUCBI, THBS1, SPP2, SERPINF1, AHSG
antler/bone 6 ANXA2, DCN, CLEC3B, OLFML 1, LUM,
CHAD
antler/ring 1 APOA1
SPARC, COL5A1, HBB, SERPINCI,
antler 11 SERPINDI, IGL, VTN, S100A12, PCOLCE,
S100A8, PGLYRP1
bone 1 COL5A2
ring 4 COL12A1,IGHG1, COL11A2, POSTN

Figure 6. Venn diagram demonstrating 1 protein shared between the ring and antler, and 0 proteins shared between the ring and
bone.

(OLFML1), annexin A2 (ANXA2), BGN, BGLAP, SPP2 and THBSI1. The antler sample also contained
evidence of five other extracellular proteins: 5100 calcium-binding proteins A8 and A12 (S100A8,
S100A12), osteonectin (SPARC), procollagen C-endopeptidase enhancer (PCOLCE) and peptidoglycan-
recognition protein (PGLYRP1). In general, there is significant overlap in the proteomes of all three
samples, i.e. 10 proteins present in all samples. The sample with the most unique proteins is the antler
(11 proteins), followed by the ring (four proteins) and the bone sample has only a single unique
protein. The plasma protein APOA1 was uniquely recovered in our extractions of the ring and the
heated modern Cervus antler. This is also visualized in a Venn diagram (figure 6). No unique proteins
were recovered between only the ring and heated modern Cervus bone.

3.7. Liquid chromatography tandem mass spectrometry protein authentication

To assess the authenticity of the proteins recovered, we examined the deamidation patterns of asparagine
(Asn/N) and glutamine (GIn/Q). Here, we observed a much higher deamidation rate in the ring sample.
On average, the ring sample expressed 57.5% (SD 3.3%) Asn and 26.1% (SD 1.9%) GIn deamidation,
while the contaminants showed 5.7% (SD 2.3%) and 0.6% (SD 0.6%), respectively (figure 7). This
damage process occurs naturally over time, and while confounded by chemical and environmental
factors (such as pH, temperature and humidity [37,38]), these results indicate that the proteins
examined in our analysis are likely not preserved well enough to be modern contamination, due to
the observed greater amount of damage detected when compared to known contaminant proteins.
Additionally, we examined deamidation of the heated modern reference samples, which also have
considerably less deamidation than the bone ring. The levels of deamidation present in the modern
antler and bone are mostly of the faster reacting asparagine, and may have been caused by the
heating step of the defleshing process they underwent before becoming a part of the museum’s
reference collection (figure 7).
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Figure 7. Deamidation comparison of the ring, heated modern reference samples as well as contaminant proteins. Numbers in each
column denote number of peptides used for the calculation. Deamidated asparagine (N) and glutamine (Q) residues from the ring
and known contaminant proteins, showing a considerably higher deamidation rate in the sample, which is evidence of authentically
ancient proteins.

4. Discussion

Skeletal fragments and heavily worked artefacts often lack morphological osteological landmarks, and
are nearly impossible to identify to the species level, let alone to skeletal element using osteological
analysis. With the increased availability of advanced analytical techniques, molecular level resolution
can be used to answer archaeological questions such as resource exploitation, manufacturing
technology and trade.

4.1. The Syltholm finger ring is made from Cervus antler or bone

Bayesian modelling of 15 radiocarbon dates, obtained from the immediate proximity to the ring was used
to indirectly date the ring to the Early Neolithic. Additionally, KDE modelling using a total of 70 dates
confirmed that while the site was frequented in the Mesolithic the most intense activity was in the Early
Neolithic. Micro-CT was employed to determine the skeletal element used to make the ring. Enamel and
bone/antler are easily distinguished from one another by non-destructive micro-CT through
visualization of Haversian canals, which are absent in enamel and dentine (including ivory) [35]. The
scans (figure 3) clearly show the presence of osteons; therefore, we can exclude enamel/dentine as the
raw material.

Having identified the material as deriving from bone or antler, ZooMS was performed to obtain
species identification. The collagen I and II peptide mass fingerprint revealed that the ring was
manufactured from either Cervus or Alces. At present, it is not possible to discriminate between some
closely related species such as these, using ZooMS, due to the conserved nature of collagen I and II. A
positive identification of Alces would imply that either an Alces bone/antler or the ring itself was
imported. However, given the choice between the two species indicated by ZooMS, Cervus would be
the most likely candidate. Alces disappeared at some point in time in this area due to rising sea-levels
(Littorina transgressions (starting ca 8400 BP)) that effectively turned Denmark into an archipelago,
whereas Cervus was still abundant in Denmark [39] at that time. Alces material could have been
introduced to the site through trade; however, no evidence of this species has been recovered at
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Sylthom from this period. LC-MS/MS protein sequencing was used to refine our ZooMS species [ 13 |
identification. Three peptides with SAPs specific to Cervus were observed, confirming it as the
source species.

4.2. Antler or bone?

Having identified the species from which the ring was crafted, we aimed to discern the skeletal element
used, in an attempt to gather more information about the manufacturing process. As mentioned above, it
is generally not possible to differentiate between archaeological antler and bone using micro-CT scanning
due to bone diagenesis. Morphologically, it is more likely that antler was used, as the cross section of a
mature antler tine is approximately the right size and shape of the Syltholm ring, aiding the
manufacturing process. By contrast long bone is less circular, necessitating additional work to achieve
a ring shape. Antler is also less energy consuming to attain, since it is shed yearly and does not
require hunting an animal. Therefore, without biomolecular analysis, antler could be the most likely
originating tissue for the ring.

At present, there has not been enough proteomic analysis of the differences in protein presence and
expression levels between antler and bone. The two tissues are very similar and most variance could be
down to quantitative differences between proteins instead of simply presence or absence. We attempted
to investigate this further by generating ‘reference’ proteomes of Cervus antler and bone to which the ring
could be compared (electronic supplementary material, SI 4). Due to the small proteome recovered from
the ring, it would be inappropriate to compare this dataset against a modern proteome. To this end, we
selected a Cervus specimen that had been experimentally heated [40] and performed the same extraction
protocol that was used for the ring sample.

Unfortunately, comparison of the ring proteome versus the antler and bone did not enable us to
confidently assign the ring to either. Due to the limitations of this study, we could not perform a
quantitative analysis, partly due to methodology and partly due to the limited recovery of proteins of
interest. To our knowledge, there has been no quantitative proteomic comparison between these two
tissues, neither with modern nor archaeological samples [41]. Stéger et al. [41], however, did
quantitatively examine modern Cervus elaphus antler and bone for differences in gene expression. They
found that the expression of eight genes were 10-30-fold times more expressed in the ossified portion
of antler than in skeletal bone from the same individual. Four of these proteins (COL1, COL3, BGLAP
and SPARC) were also found in the ring sample. These are all proteins associated with skeletal
development, and can be found in both antler and bone. However, it is unsurprising that bone
development proteins are more abundant in antler as it is the fastest growing mammalian tissue [42]
due to yearly regeneration. While our analyses were not quantitative, it is not out of the question that
more abundant proteins would be more likely to be recovered, especially from a proteome depleted
sample (due to taphonomic processes). Other proteins recovered from the Syltholm ring are associated
with bone formation and mineralization, such as: AHSG [43], SPP2 [44] and POSTN [45]. Collagens
type 3, 11 and 12 were recovered, all of which are associated with collagen formation in growing bone
[46,47] and present in the growing antler [48,49]. Normally, COL11 and 12 are associated with
cartilage, not mineralized bone [47,50,51], but are considered abundant in antler [48,49]. COL11 and
COL12 have been recovered from archaeological bone (e.g. [52,53]), but Sawafuji et al. [53] have
shown that the protein abundance score of COL12 decreases in older human individuals compared to
those younger, correllating with the relative amount of bone growth.

We also discovered multiple blood proteins in the ring IGHG1, ALB, APOA1 and NUCB1). Growing
antlers are a highly vascular tissue and contain at least twice as much blood at their peak growth as ovine
rib bones, which decreases as the antler ossifies [54]. APOA1, a major component of plasma high-density
lipoprotein shown to be linked to osteoblastgenesis and bone synthesis [55], was the only protein
uniquely recovered between the modern antler and the ring, although it has also been found in
archaeological bone [52,53] and could represent missed recovery in the bone sample. It is of note that
APOA1 was only detected by Sawafuji et al. [53] in the infant remains studied [53], indicating
association with bone formation. It, along with SERPINF1, POSTN and THBSI, has been implicated in
axon/nerve growth in growing antlers [56]. SERPINF1 and THBS1 have also been implicated in the
stimulation and remodelling of vasculature in antler cartilage, respectively [56,57]. However, these
proteins are also recovered from bone samples, albeit highly associated with bone growth and
remodelling: SERPINF1 being expressed by osteoblasts during endochondrial bone formation [58],
POSTIN is highly expressed in the periosteum and highly active during bone growth and contributes
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to changes in bone diameter and cortical thickness [45], and THBSI is implicated in the remodelling of [ 14 |
bone, maintenance of bone mass and fracture healing [59,60].

Therefore, we suggest that the proteins recovered, especially those related to increased bone growth
and high vascularization, are consistent with a possible tissue identification of antler, suggested based on
the ease of manufacture of this item from antler. However, there is not sufficient evidence to rule out bone
either. We greatly encourage more research be undertaken to confirm the proteomic differences between
antler and skeletal bone, as it would be valuable for future palaeoproteomic studies and the
understanding of archaeological worked ossified objects.

4.3. Species identification sheds light on resource exploitation and manufacturing processes

The only coeval ring we know of from the Danish area is the ring from the Nederst shell-midden, on
the Djursland peninsula of Jutland (approx. 200 km away). The Nederst ring is considerably smaller
(@=1.5cm) and thus may have been made to fit an adult female or a child. As mentioned earlier,
Kannegaard [12] suggests that the raw material used for manufacture was wild boar canine. From the
same site, a small rectangular enamel/dentine disc was also found, with a semicircle removed by
carving [12], thus showing that manufacturing took place at the midden. At another shell-midden,
Stubbe Station, Jutland, two wild boar tusks with transverse saw marks were found. One shows a
hole drilled into it, which seems to have cracked the tusk longitudinally [61]. A possible
manufacturing process (or chaine opératoire) of dentine/enamel rings can be suggested from these
finds: (i) extracting the tusk of a wild boar, (ii) drilling a hole of desired size into the tusk,
(iii) transverse sawing on either side to liberate a rectangular preform, (iv) removing the corners of the
rectangle and making it circular, (v) grinding and polishing of the exterior. Since no waste material
has so far been found from osseous finger ring production in Syltholm, its chaine opératoire cannot be
established at present. However, one can imagine that production of such a ring would require:
(i) obtaining an antler or bone of a Cervus, (ii) transverse sawing to obtain a rough-out, (iii) scraping
off the velvet bone for antler; more intensive circular shaping for bone, (iv) removal of the interior
trabecular tissue using a flint borer and (v) polishing of the exterior.

Apart from being broken, the ring was well preserved and does not show any evidence of use-wear,
which suggests that it was produced in the vicinity of the site. Based on the limited evidence presented
here, it may be the case that there were geographically distinct chaine operatoires for ring production
during the transition period; the eastern part favouring rings made from antler tines or bone, whereas
the western part favoured tusks. While it cannot be ruled out that the Syltholm ring was not
manufactured at the site (trade item), there is evidence of regional differences in manufacturing
techniques and resource exploitation in Denmark on both sides of the transition. During the Ertebolle
period, bone combs, large circular bone rings cut from the scapulae of aurochs (Bos primigenius),
extinct on Zealand during this period, are almost exclusively found in the western part of Denmark
[62], whereas Limhamn and Oringe axes and adzes are mostly found in the eastern part and in Scania
[63,64]. During the Early Neolithic, Volling-type ceramics are only found in the western part, whereas
Svaleklint ceramics cluster in eastern areas [65].
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5. Conclusion

This study presents the analysis of a unique artefact, an osseous finger ring, from the period of the
Neolithization of northern Europe, contextually dated to the cusp of the Neolithic. We demonstrate
the potential of combining several analytical methods on highly worked archaeological osseous
artefacts to obtain a plethora of information even from small quantities of sample. The tomographic
analysis revealed a matrix of osteons thus assigning the skeletal element to bone/antler, not enamel/
dentine as used for the coveal and proximal Nederst ring. Peptide mass fingerprinting and protein
sequencing revealed that the species used to manufacture the Syltholm ring was Cervus elaphus.
Unfortunately, we were not able to determine if the ring was made of bone or antler. Nonetheless,
this study demonstrates how ancient proteomics can still help identify and characterize the source of
osseous material used in the manufacture of artefacts, which in turn can be used to infer regional
differences in manufacturing processes and resource procurement.

Data accessibility. The mass spectrometry data for both ZooMS and LC-MS/MS have been deposited on the PRIDE
Archive [66] with the dataset identifier PXD011811.
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