695 research outputs found

    A nonstationary form of the range refraction parabolic equation and its application as an artificial boundary condition for the wave equation in a waveguide

    Full text link
    The time-dependent form of Tappert's range refraction parabolic equation is derived using Daletskiy-Krein formula form noncommutative analysis and proposed as an artificial boundary condition for the wave equation in a waveguide. The numerical comparison with Higdon's absorbing boundary conditions shows sufficiently good quality of the new boundary condition at low computational cost.Comment: 12 pages, 9 figure

    Extension of the Space Experiment GRIS Onboard the ISS Capabilities: Registration of Short Gamma-ray Bursts and TGF

    Get PDF
    The unique capabilities of the detector, based on the CeBr3 crystal (very short flashing time) allow us to expand the range of problems solved in the GRIS experiment. In addition to registering solar flares that have characteristic times per second÷minute, this detector allows solving problems in identifying and recording characteristics of geophysical and astrophysical events (short gamma-ray bursts - SGRB and terrestial gamma-ray flares - TGF) in the time range of 10μs÷1 ms. The modification of the hardware of the GRIS device for solving these problems is described and discussed in this paper

    Neutrinos in a spherical box

    Full text link
    In the present paper we study some neutrino properties as they may appear in the low energy neutrinos emitted in triton decay with maximum neutrino energy of 18.6 keV. The technical challenges to this end can be achieved by building a very large TPC capable of detecting low energy recoils, down to a a few tenths of a keV, within the required low background constraints. More specifically We propose the development of a spherical gaseous TPC of about 10-m in radius and a 200 Mcurie triton source in the center of curvature. One can list a number of exciting studies, concerning fundamental physics issues, that could be made using a large volume TPC and low energy antineutrinos: 1) The oscillation length involving the small angle of the neutrino mixing matrix, directly measured in this disappearance experiment, is fully contained inside the detector. Measuring the counting rate of neutrino-electron elastic scattering as a function of the distance of the source will give a precise and unambiguous measurement of the oscillation parameters free of systematic errors. In fact first estimates show that even with a year's data taking a sensitivity of a few percent for the measurement of the above angle will be achieved. 2) The low energy detection threshold offers a unique sensitivity for the neutrino magnetic moment which is about two orders of magnitude beyond the current experimental limit. 3) Scattering at such low neutrino energies has never been studied and any departure from the expected behavior may be an indication of new physics beyond the standard model. In this work we mainly focus on the various theoretical issues involved including a precise determination of the Weinberg angle at very low momentum transfer.Comment: 16 Pages, LaTex, 7 figures, talk given at NANP 2003, Dubna, Russia, June 23, 200

    Electrochemical Synthesis of Nano-sized Silicon from KCI–K2SiF6 Melts for Powerful Lithium-Ion Batteries

    Full text link
    Currently, silicon and silicon-based composite materials are widely used in microelectronics and solar energy devices. At the same time, silicon in the form of nanoscale fibers and various particles morphology is required for lithium-ion batteries with increased capacity. In this work, we studied the electrolytic production of nanosized silicon from low-fluoride KCl–K2SiF6 and KCl–K2SiF6–SiO2 melts. The effect of SiO2 addition on the morphology and composition of electrolytic silicon deposits was studied under the conditions of potentiostatic electrolysis (cathode overvoltage of 0.1, 0.15, and 0.25 V vs. the potential of a quasi-reference electrode). The obtained silicon deposits were separated from the electrolyte residues, analyzed by scanning electron microscopy and spectral analysis, and then used to fabricate a composite Si/C anode for a lithium-ion battery. The energy characteristics of the manufactured anode half-cells were measured by the galvanostatic cycling method. Cycling revealed better capacity retention and higher coulombic efficiency of the Si/C composite based on silicon synthesized from KCl–K2SiF6–SiO2 melt. After 15 cycles at 200 mA·g−1, material obtained at 0.15 V overvoltage demonstrates capacity of 850 mAh·g−1 . © 2021 by the authors. Licensee MDPI, Basel, Switzerland.This research received no external funding. This work is performed in the frame of the State Assignment number 075-032020-582/1, dated 18 February 2020 (the theme number 0836-2020-0037)

    Polarity and structure of derivatives of bis(2-phenylethyl)selenophosphinic acid

    Get PDF
    © 2017 IUPAC & De Gruyter.Conformational analysis of derivatives of bis(2-phenylethyl)selenophosphinic acid was carried out by the method of dipole moments and density functional theory calculations. The conformations of the examined compounds fit into the overall conformational picture for the PIV compounds: These derivatives exist as conformational equilibrium of non-eclipsed gauche and trans forms with propeller arrangement of the substituents relative to the P=Se bond. We stipulate that the eclipsed cis orientation of substituent may be caused by the formation of H-contact

    Optimal margin and edge-enhanced intensity maps in the presence of motion and uncertainty

    Get PDF
    In radiation therapy, intensity maps involving margins have long been used to counteract the effects of dose blurring arising from motion. More recently, intensity maps with increased intensity near the edge of the tumour (edge enhancements) have been studied to evaluate their ability to offset similar effects that affect tumour coverage. In this paper, we present a mathematical methodology to derive margin and edge-enhanced intensity maps that aim to provide tumour coverage while delivering minimum total dose. We show that if the tumour is at most about twice as large as the standard deviation of the blurring distribution, the optimal intensity map is a pure scaling increase of the static intensity map without any margins or edge enhancements. Otherwise, if the tumour size is roughly twice (or more) the standard deviation of motion, then margins and edge enhancements are preferred, and we present formulae to calculate the exact dimensions of these intensity maps. Furthermore, we extend our analysis to include scenarios where the parameters of the motion distribution are not known with certainty, but rather can take any value in some range. In these cases, we derive a similar threshold to determine the structure of an optimal margin intensity map.National Cancer Institute (U.S.) (grant R01-CA103904)National Cancer Institute (U.S.) (grant R01-CA118200)Natural Sciences and Engineering Research Council of Canada (NSERC)Siemens AktiengesellschaftMassachusetts Institute of Technology. Hugh Hampton Young Memorial Fund fellowshi

    Singularities, Lax degeneracies and Maslov indices of the periodic Toda chain

    Full text link
    The n-particle periodic Toda chain is a well known example of an integrable but nonseparable Hamiltonian system in R^{2n}. We show that Sigma_k, the k-fold singularities of the Toda chain, ie points where there exist k independent linear relations amongst the gradients of the integrals of motion, coincide with points where there are k (doubly) degenerate eigenvalues of representatives L and Lbar of the two inequivalent classes of Lax matrices (corresponding to degenerate periodic or antiperiodic solutions of the associated second-order difference equation). The singularities are shown to be nondegenerate, so that Sigma_k is a codimension-2k symplectic submanifold. Sigma_k is shown to be of elliptic type, and the frequencies of transverse oscillations under Hamiltonians which fix Sigma_k are computed in terms of spectral data of the Lax matrices. If mu(C) is the (even) Maslov index of a closed curve C in the regular component of R^{2n}, then (-1)^{\mu(C)/2} is given by the product of the holonomies (equal to +/- 1) of the even- (or odd-) indexed eigenvector bundles of L and Lmat.Comment: 25 pages; published versio

    Kinetic Inductance and Penetration Depth of Thin Superconducting Films Measured by THz Pulse Spectroscopy

    Full text link
    We measure the transmission of THz pulses through thin films of YBCO at temperatures between 10K and 300K. The pulses possess a useable bandwidth extending from 0.1 -- 1.5 THz (3.3 cm^-1 -- 50 cm^-1). Below T_c we observe pulse reshaping caused by the kinetic inductance of the superconducting charge carriers. From transmission data, we extract values of the London penetration depth as a function of temperature, and find that it agrees well with a functional form (\lambda(0)/\lambda(T))^2 = 1 - (T/T_c)^{\alpha}, where \lambda(0) = 148 nm, and \alpha = 2. *****Figures available upon request*****Comment: 7 Pages, LaTe

    Extremely polysubstituted magnetic material based on magnetoplumbite with a hexagonal structure: Synthesis, structure, properties, prospects

    Full text link
    Crystalline high-entropy single-phase products with a magnetoplumbite structure with grains in the µm range were obtained using solid-state sintering. The synthesis temperature was up to 1400 °C. The morphology, chemical composition, crystal structure, magnetic, and electrodynamic properties were studied and compared with pure barium hexaferrite BaFe 12 O 19 matrix. The polysubstituted high-entropy single-phase product contains five doping elements at a high concentration level. According to the EDX data, the new compound has a formula of Ba(Fe6Ga1.25In1.17Ti1.21Cr1.22Co1.15)O19. The calculated cell parameter values were a = 5.9253(5) Å, c = 23.5257(22) Å, and V = 715.32(9) Å3. The increase in the unit cell for the substituted sample was expected due to the different ionic radius of Ti/In/Ga/Cr/Co compared with Fe3+. The electrodynamicmeasurements were performed. The dielectric and magnetic permeabilities were stable in the frequency range from 2 to 12 GHz. In this frequency range, the dielectric and magnetic losses were??0.2/0.2. Due to these electrodynamic parameters, this material can be used in the design of microwave strip devices. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.Funding: The work was supported by the Russian Science Foundation, project No. 18-73-10049
    corecore