1,876 research outputs found
Vision during manned booster operation Final report
Retinal images and accomodation control mechanism under conditions of space flight stres
On Tao's "finitary" infinite pigeonhole principle
In 2007, Terence Tao wrote on his blog an essay about soft analysis, hard
analysis and the finitization of soft analysis statements into hard analysis
statements. One of his main examples was a quasi-finitization of the infinite
pigeonhole principle IPP, arriving at the "finitary" infinite pigeonhole
principle FIPP1. That turned out to not be the proper formulation and so we
proposed an alternative version FIPP2. Tao himself formulated yet another
version FIPP3 in a revised version of his essay.
We give a counterexample to FIPP1 and discuss for both of the versions FIPP2
and FIPP3 the faithfulness of their respective finitization of IPP by studying
the equivalences IPP FIPP2 and IPP FIPP3 in the context of reverse
mathematics. In the process of doing this we also introduce a continuous
uniform boundedness principle CUB as a formalization of Tao's notion of a
correspondence principle and study the strength of this principle and various
restrictions thereof in terms of reverse mathematics, i.e., in terms of the
"big five" subsystems of second order arithmetic
Arithmetical conservation results
In this paper we present a proof of Goodman's Theorem, a classical result in
the metamathematics of constructivism, which states that the addition of the
axiom of choice to Heyting arithmetic in finite types does not increase the
collection of provable arithmetical sentences. Our proof relies on several
ideas from earlier proofs by other authors, but adds some new ones as well. In
particular, we show how a recent paper by Jaap van Oosten can be used to
simplify a key step in the proof. We have also included an interesting
corollary for classical systems pointed out to us by Ulrich Kohlenbach
On the strength of dependent products in the type theory of Martin-L\"of
One may formulate the dependent product types of Martin-L\"of type theory
either in terms of abstraction and application operators like those for the
lambda-calculus; or in terms of introduction and elimination rules like those
for the other constructors of type theory. It is known that the latter rules
are at least as strong as the former: we show that they are in fact strictly
stronger. We also show, in the presence of the identity types, that the
elimination rule for dependent products--which is a "higher-order" inference
rule in the sense of Schroeder-Heister--can be reformulated in a first-order
manner. Finally, we consider the principle of function extensionality in type
theory, which asserts that two elements of a dependent product type which are
pointwise propositionally equal, are themselves propositionally equal. We
demonstrate that the usual formulation of this principle fails to verify a
number of very natural propositional equalities; and suggest an alternative
formulation which rectifies this deficiency.Comment: 18 pages; v2: final journal versio
An Intuitionistic Formula Hierarchy Based on High-School Identities
We revisit the notion of intuitionistic equivalence and formal proof
representations by adopting the view of formulas as exponential polynomials.
After observing that most of the invertible proof rules of intuitionistic
(minimal) propositional sequent calculi are formula (i.e. sequent) isomorphisms
corresponding to the high-school identities, we show that one can obtain a more
compact variant of a proof system, consisting of non-invertible proof rules
only, and where the invertible proof rules have been replaced by a formula
normalisation procedure.
Moreover, for certain proof systems such as the G4ip sequent calculus of
Vorob'ev, Hudelmaier, and Dyckhoff, it is even possible to see all of the
non-invertible proof rules as strict inequalities between exponential
polynomials; a careful combinatorial treatment is given in order to establish
this fact.
Finally, we extend the exponential polynomial analogy to the first-order
quantifiers, showing that it gives rise to an intuitionistic hierarchy of
formulas, resembling the classical arithmetical hierarchy, and the first one
that classifies formulas while preserving isomorphism
The Small-Is-Very-Small Principle
The central result of this paper is the small-is-very-small principle for
restricted sequential theories. The principle says roughly that whenever the
given theory shows that a property has a small witness, i.e. a witness in every
definable cut, then it shows that the property has a very small witness: i.e. a
witness below a given standard number.
We draw various consequences from the central result. For example (in rough
formulations): (i) Every restricted, recursively enumerable sequential theory
has a finitely axiomatized extension that is conservative w.r.t. formulas of
complexity . (ii) Every sequential model has, for any , an extension
that is elementary for formulas of complexity , in which the
intersection of all definable cuts is the natural numbers. (iii) We have
reflection for -sentences with sufficiently small witness in any
consistent restricted theory . (iv) Suppose is recursively enumerable
and sequential. Suppose further that every recursively enumerable and
sequential that locally inteprets , globally interprets . Then,
is mutually globally interpretable with a finitely axiomatized sequential
theory.
The paper contains some careful groundwork developing partial satisfaction
predicates in sequential theories for the complexity measure depth of
quantifier alternations
Provably Total Functions of Arithmetic with Basic Terms
A new characterization of provably recursive functions of first-order
arithmetic is described. Its main feature is using only terms consisting of 0,
the successor S and variables in the quantifier rules, namely, universal
elimination and existential introduction.Comment: In Proceedings DICE 2011, arXiv:1201.034
Classical Mathematics for a Constructive World
Interactive theorem provers based on dependent type theory have the
flexibility to support both constructive and classical reasoning. Constructive
reasoning is supported natively by dependent type theory and classical
reasoning is typically supported by adding additional non-constructive axioms.
However, there is another perspective that views constructive logic as an
extension of classical logic. This paper will illustrate how classical
reasoning can be supported in a practical manner inside dependent type theory
without additional axioms. We will see several examples of how classical
results can be applied to constructive mathematics. Finally, we will see how to
extend this perspective from logic to mathematics by representing classical
function spaces using a weak value monad.Comment: v2: Final copy for publicatio
Ecology of the plant-feeding nematode fauna associated with sea buckthorn (Hippophaë rhamnoides L. ssp. rhamnoides) in different stages of dune succession
- …
