research

The Small-Is-Very-Small Principle

Abstract

The central result of this paper is the small-is-very-small principle for restricted sequential theories. The principle says roughly that whenever the given theory shows that a property has a small witness, i.e. a witness in every definable cut, then it shows that the property has a very small witness: i.e. a witness below a given standard number. We draw various consequences from the central result. For example (in rough formulations): (i) Every restricted, recursively enumerable sequential theory has a finitely axiomatized extension that is conservative w.r.t. formulas of complexity n\leq n. (ii) Every sequential model has, for any nn, an extension that is elementary for formulas of complexity n\leq n, in which the intersection of all definable cuts is the natural numbers. (iii) We have reflection for Σ20\Sigma^0_2-sentences with sufficiently small witness in any consistent restricted theory UU. (iv) Suppose UU is recursively enumerable and sequential. Suppose further that every recursively enumerable and sequential VV that locally inteprets UU, globally interprets UU. Then, UU is mutually globally interpretable with a finitely axiomatized sequential theory. The paper contains some careful groundwork developing partial satisfaction predicates in sequential theories for the complexity measure depth of quantifier alternations

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 29/05/2021
    Last time updated on 01/05/2021