58 research outputs found

    Can we be tricked into thinking that w is less than -1?

    Full text link
    Dark energy candidates for which the equation-of-state parameter w is less than -1 violate the dominant energy condition, and are typically unstable. In scalar-tensor theories of gravity, however, the expansion of the universe can mimic the behavior of general relativity with w<-1 dark energy, without violating any energy conditions. We examine whether this possibility is phenomenologically viable by studying Brans-Dicke models and characterizing both the naturalness of the models themselves, and additional observational constraints from limits on the time-dependence of Newton's constant. We find that only highly contrived models would lead observers to measure w<-1.Comment: 20 pages, 4 figures, uses RevTe

    Cosmic Acceleration and Modified Gravity

    Get PDF
    I briefly discuss some attempts to construct a consistent modification to General Relativity (GR) that might explain the observed late-time acceleration of the universe and provide an alternative to dark energy. I mention the issues facing extensions to GR, illustrate these with two specific examples, and discuss the resulting observational and theoretical obstacles. This article comprises an invited talk at the NASA workshop {\it From Quantum to Cosmos: Fundamental Physics Research in Space}Comment: 12 pages, 1 figure. Invited talk at the NASA workshop - From Quantum to Cosmos: Fundamental Physics Research in Space, May 21-24 200

    Generalized Gravity and a Ghost

    Full text link
    We show that generalized gravity theories involving the curvature invariants of the Ricci tensor and the Riemann tensor as well as the Ricci scalar are equivalent to multi- scalar-tensor gravities with four derivatives terms. By expanding the action around a vacuum spacetime, the action is reduced to that of the Einstein gravity with four derivative terms, and consequently there appears a massive spin-2 ghost in such generalized gravity theories in addition to a massive spin-0 field.Comment: 8 pages, a reference adde

    Codimension Two Branes in Einstein-Gauss-Bonnet Gravity

    Full text link
    Codimension two branes play an interesting role in attacking the cosmological constant problem. Recently, in order to handle some problems in codimension two branes in Einstein gravity, Bostock {\it et al.} have proposed using six-dimensional Einstein-Gauss-Bonnet (EGB) gravity instead of six-dimensional Einstein gravity. In this paper, we present the solutions of codimension two branes in six-dimensional EGB gravity. We show that Einstein's equations take a "factorizable" form for a factorized metric tensor ansatz even in the presence of the higher-derivative Gauss-Bonnet term. Especially, a new feature of the solution is that the deficit angle depends on the brane geometry. We discuss the implication of the solution to the cosmological constant problem. We also comment on a possible problem of inflation model building on codimension two branes.Comment: 16 pages, no figures. v2: References added; v3: Reference added, Sec.4 and 5 combined into one; v4: References added, minor corrections, to appear in Physical Review

    Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson

    Get PDF
    We exhibit a model in which a single pseudo-Nambu-Goldstone boson explains dark energy, inflation and baryogenesis. The model predicts correlated signals in future collider experiments, WIMP searches, proton decay experiments, dark energy probes, and the PLANCK satellite CMB measurements.Comment: 16 pages, 3 color figure

    Domain Wall Junctions are 1/4-BPS States

    Full text link
    We study N=1 SUSY theories in four dimensions with multiple discrete vacua, which admit solitonic solutions describing segments of domain walls meeting at one-dimensional junctions. We show that there exist solutions preserving one quarter of the underlying supersymmetry -- a single Hermitian supercharge. We derive a BPS bound for the masses of these solutions and construct a solution explicitly in a special case. The relevance to the confining phase of N=1 SUSY Yang-Mills and the M-theory/SYM relationship is discussed.Comment: 18 pages, 4 figures, uses RevTeX. Brief comments concerning lattices of junctions added. Version to appear in Phys. Rev.
    • …
    corecore