343 research outputs found

    Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions

    Get PDF
    Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, represent- ing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated posi- tions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular path- ways associated with aetiological variation in complex disease

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD

    Influence of coding variability in APP-Aß metabolism genes in sporadic Alzheimer's disease

    Get PDF
    The cerebral deposition of Aß42, a neurotoxic proteolitic derivate of amyloid precursor protein (APP), is a central event in Alzheimer’s disease (AD)(Amyloid hypothesis). Given the key role of APP-Aß metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aß degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 435 sporadic and mainly late-onset AD cases and 801 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, which were nominally significant, were found to be very rare coding variants (MAF 0.3%-0.8%) that map to genes involved in APP processing (MEP1B), trafficking and recycling (SORL1), Aß extracellular degradation (ACE) and clearance (LRP1). Moreover, four genes (ECE1, LYZ, TTR and MME) have been found as nominally associated to AD using c-alpha and SKAT tests. We suggest that Aβ degradation and clearance, rather than Aβ production, may play a crucial role in the etiology of sporadic AD

    Influence of coding variability in APP-Aβ metabolism genes in sporadic Alzheimer’s disease

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The cerebral deposition of Aβ42, a neurotoxic proteolytic derivate of amyloid precursor protein (APP), is a central event in Alzheimer's disease (AD)(Amyloid hypothesis). Given the key role of APP-Aβ metabolism in AD pathogenesis, we selected 29 genes involved in APP processing, Aβ degradation and clearance. We then used exome and genome sequencing to investigate the single independent (single-variant association test) and cumulative (gene-based association test) effect of coding variants in these genes as potential susceptibility factors for AD, in a cohort composed of 332 sporadic and mainly late-onset AD cases and 676 elderly controls from North America and the UK. Our study shows that common coding variability in these genes does not play a major role for the disease development. In the single-variant association analysis, the main hits, none of which statistically significant after multiple testing correction (1.9e-4<p-value<0.05), were found to be rare coding variants (0.009%<MAF<1.4%) with moderate to strong effect size (1.84<OR<Inf) that map to genes mainly involved in Aβ extracellular degradation (TTR, ACE), clearance (LRP1) and APP trafficking and recycling (SORL1). These results were partially replicated in the gene-based analysis (c-alpha and SKAT tests), that reports ECE1, LYZ and TTR as nominally associated to AD (1.7e-3 <p-value <0.05). In concert with previous studies, we suggest that 1) common coding variability in APP-Aβ genes is not a critical factor for AD development and 2) Aβ degradation and clearance, rather than Aβ production, may play a key role in the etiology of sporadic AD.This study was supported by the Alzheimer's Research UK, the Medical Research Council (MRC), the Wellcome Trust/MRC Joint Call in Neurodegeneration Award (WT089698) to the UK Parkinson's Disease Consortium (whose members are from the University College London Institute of Neurology, the University of Sheffield, and the MRC Protein Phosphorylation Unit at the University of Dundee), grants (P50 AG016574, U01 AG006786, and R01 AG18023), the National Institute for Health Research Biomedical Research Unit in Dementia at University College London Hospitals, University College London; the Big Lottery (to Dr. Morgan); a fellowship from Alzheimer's Research UK (to Dr. Guerreiro); and the Intramural Research Programs of the National Institute on Aging and the National Institute of Neurological Disease and Stroke, National Institutes of Health (Department of Health and Human Services Project number, ZO1 AG000950-10). The MRC London Neurodegenerative Diseases Brain Bank and the Manchester Brain Bank from Brains for Dementia Research are jointly funded from ARUK and AS. Tissue samples were supplied by The London Neurodegenerative Diseases Brain Bank, which receives funding from the MRC and as part of the Brains for Dementia Research programme, jointly funded by Alzheimer’s Research UK and Alzheimer’s Society

    Control tissue in brain banking:the importance of thorough neuropathological assessment

    Get PDF
    Historically, control brain tissue was classified as such mainly by clinical history, and underwent limited neuropathological analysis. Significant progress has been made in recent years with the collection of more extensive clinical information and more specific classifications of neurodegenerative disease, aided by advances in histological processing and increasingly sensitive detection methods. We hypothesised that this may have resulted in certain pathologies previously going unidentified, due to insufficient block sampling and an inadequate range of stains, resulting in the disease not being recognised. We therefore investigated the significance of changes to our own protocols for examining control brain tissue before and after 2007. Control cases that were originally assessed before 2007 were re-assessed using our current staining protocol and antibodies, and compared with age-matched cases post-2007. We found that almost all cases that were originally described as neuropathologically normal displayed some level of pathology after re-analysis, with four cases displaying what we have termed ‘major’ pathology that previously went unidentified, emphasising on a small scale the importance of accurate neuropathological analysis of control tissue, and highlighting the inherent difficulty of traditionally classifying tissue simply as ‘disease’ or ‘control’. We hope our findings will stimulate debate within the brain banking community, with the eventual aim being standardisation of protocols for assessing controls across brain banks.</p

    ALS-FUS pathology revisited:singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation

    Get PDF
    INTRODUCTION: Mutations in the FUS gene have been shown to be a rare cause of amyotrophic lateral sclerosis (ALS-FUS) and whilst well documented clinically and genetically there have been relatively few neuropathological studies.Recent work suggested a possible correlation between pathological features such as frequency of basophilic inclusions in neurons and rate of clinical decline, other studies have revealed a discrepancy between the upper motor neuron features detected clinically and the associated pathology. The purpose of this study was to describe the pathological features associated with more recently discovered FUS mutations and reinvestigate those with well recognised mutations in an attempt to correlate the pathology with mutation and/or clinical phenotype. The brains and spinal cords of seven cases of ALS-FUS were examined neuropathologically, including cases with the newly described p.K510E mutation and a case with both a known p.P525L mutation in the FUS gene and a truncating p.Y374X mutation in the TARDBP gene.RESULTS: The neuropathology in all cases revealed basophilic and FUS inclusions in the cord. The density and type of inclusions varied markedly between cases, but did not allow a clear correlation with clinical progression. Only one case showed significant motor cortical pathology despite the upper motor neuron clinical features being evident in 4 patients. The case with both a FUS and TARDBP mutation revealed FUS positive inclusions but no TDP-43 pathology. Instead there were unusual p62 positive, FUS negative neuronal and glial inclusions as well as dot-like neurites.CONCLUSIONS: The study confirms cases of ALS-FUS to be mainly a lower motor neuron disease and to have pathology that does not appear to neatly correlate with clinical features or genetics. Furthermore, the case with both a FUS and TARDBP mutation reveals an intriguing pathological profile which at least in part involves a very unusual staining pattern for the ubiquitin-binding protein p62.</p

    Author Correction: A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex

    Get PDF
    There is increasing evidence that endogenous retroviruses (ERVs) play a significant role in central nervous system diseases, including amyotrophic lateral sclerosis (ALS). Studies of ALS have consistently identified retroviral enzyme reverse transcriptase activity in patients. Evidence indicates that ERVs are the cause of reverse transcriptase activity in ALS, but it is currently unclear whether this is due to a specific ERV locus or a family of ERVs. We employed a combination of bioinformatic methods to identify whether specific ERVs or ERV families are associated with ALS. Using the largest post-mortem RNA-sequence datasets available we selectively identified ERVs that closely resembled full-length proviruses. In the discovery dataset there was one ERV locus (HML6_3p21.31c) that showed significant increased expression in post-mortem motor cortex tissue after multiple-testing correction. Using six replication post-mortem datasets we found HML6_3p21.31c was consistently upregulated in ALS in motor cortex and cerebellum tissue. In addition, HML6_3p21.31c showed significant co-expression with cytokine binding and genes involved in EBV, HTLV-1 and HIV type-1 infections. There were no significant differences in ERV family expression between ALS and controls. Our results support the hypothesis that specific ERV loci are involved in ALS pathology
    corecore