93 research outputs found
Stoichiometry, structure, and transport in the quasi-one-dimensional metal, Li(0.9)Mo(6)O(17)
A correlation between lattice parameters, oxygen composition, and the
thermoelectric and Hall coefficients is presented for single-crystal
Li(0.9)Mo(6)O(17), a quasi-one-dimensional (Q1D) metallic compound. The
possibility that this compound is a compensated metal is discussed in light of
a substantial variability observed in the literature for these transport
coefficients.Comment: 5 pages, 4 Figures; Phys. Rev. B (in press
Photospheric and chromospheric magnetic activity of seismic solar analogs. Observational inputs on the solar/stellar connection from Kepler and Hermes
We identify a set of 18 solar analogs among the seismic sample of solar-like
stars observed by the Kepler satellite rotating between 10 and 40 days. This
set is constructed using the asteroseismic stellar properties derived using
either the global oscillation properties or the individual acoustic
frequencies. We measure the magnetic activity properties of these stars using
observations collected by the photometric Kepler satellite and by the
ground-based, high-resolution Hermes spectrograph mounted on the Mercator
telescope. The photospheric (Sph) and chromospheric (S index) magnetic activity
levels of these seismic solar analogs are estimated and compared in relation to
the solar activity. We show that the activity of the Sun is comparable to the
activity of the seismic solar analogs, within the maximum-to-minimum temporal
variations of the 11-year solar activity cycle 23. In agreement with previous
studies, the youngest stars and fastest rotators in our sample are actually the
most active. The activity of stars older than the Sun seems to not evolve much
with age. Furthermore, the comparison of the photospheric, Sph, with the
well-established chromospheric, S index, indicates that the Sph index can be
used to provide a suitable magnetic activity proxy which can be easily
estimated for a large number of stars from space photometric observations.Comment: Accepted for publication in A&
Spectroscopic survey of Kepler stars – II. FIES/NOT observations of A- and F-type stars
We have analysed high-resolution spectra of 28 A and 22 F stars in the Kepler field, observed using the Fibre-Fed Échelle Spectrograph at the Nordic Optical Telescope. We provide spectral types, atmospheric parameters and chemical abundances for 50 stars. Balmer, Fe I and Fe II lines were used to derive effective temperatures, surface gravities and microturbulent velocities. We determined chemical abundances and projected rotational velocities using a spectrum synthesis technique. Effective temperatures calculated by spectral energy distribution fitting are in good agreement with those determined from the spectral line analysis. The stars analysed include chemically peculiar stars of the Am and λ Boo types, as well as stars with approximately solar chemical abundances. The wide distribution of projected rotational velocity, vsin i, is typical for A and F stars. The microturbulence velocities obtained are typical for stars in the observed temperature and surface gravity ranges. Moreover, we affirm the results of Niemczura et al. that Am stars do not have systematically higher microturbulent velocities than normal stars of the same temperature
ST2 and IL-33 in Pregnancy and Pre-Eclampsia
Normal pregnancy is associated with a mild systemic inflammatory response and an immune bias towards type 2 cytokine production, whereas pre-eclampsia is characterized by a more intense inflammatory response, associated with endothelial dysfunction and a type 1 cytokine dominance. Interleukin (IL)-33 is a newly described member of the IL-1 family, which binds its receptor ST2L to induce type 2 cytokines. A soluble variant of ST2 (sST2) acts as a decoy receptor to regulate the activity of IL-33. In this study circulating IL-33 and sST2 were measured in each trimester of normal pregnancy and in women with pre-eclampsia. While IL-33 did not change throughout normal pregnancy, or between non-pregnant, normal pregnant or pre-eclamptic women, sST2 was significantly altered. sST2 was increased in the third trimester of normal pregnancy (p<0.001) and was further increased in pre-eclampsia (p<0.001). This increase was seen prior to the onset of disease (p<0.01). Pre-eclampsia is a disease caused by placental derived factors, and we show that IL-33 and ST2 can be detected in lysates from both normal and pre-eclampsia placentas. ST2, but not IL-33, was identified on the syncytiotrophoblast layer, whereas IL-33 was expressed on perivascular tissue. In an in vitro placental perfusion model, sST2 was secreted by the placenta into the ‘maternal’ eluate, and placental explants treated with pro-inflammatory cytokines or subjected to hypoxia/reperfusion injury release more sST2, suggesting the origin of at least some of the increased amounts of circulating sST2 in pre-eclamptic women is the placenta. These results suggest that sST2 may play a significant role in pregnancies complicated by pre-eclampsia and increased sST2 could contribute to the type 1 bias seen in this disorder
Switching Multiple Sclerosis Patients with Breakthrough Disease to Second-Line Therapy
BACKGROUND: Multiple sclerosis (MS) patients with breakthrough disease on immunomodulatory drugs are frequently offered to switch to natalizumab or immunosuppressants. The effect of natalizumab monotherapy in patients with breakthrough disease is unknown. METHODS: This is an open-label retrospective cohort study of 993 patients seen at least four times at the University of California San Francisco MS Center, 95 had breakthrough disease on first-line therapy (60 patients switched to natalizumab, 22 to immunosuppressants and 13 declined the switch [non-switchers]). We used Poisson regression adjusted for potential confounders to compare the relapse rate within and across groups before and after the switch. RESULTS: In the within-group analyses, the relapse rate decreased by 70% (95% CI 50,82%; p<0.001) in switchers to natalizumab and by 77% (95% CI 59,87%; p<0.001) in switchers to immunosuppressants; relapse rate in non-switchers did not decrease (6%, p = 0.87). Relative to the reduction among non-switchers, the relapse rate was reduced by 68% among natalizumab switchers (95% CI 19,87%; p = 0.017) and by 76% among the immunosuppressant switchers (95% CI 36,91%; p = 0.004). CONCLUSIONS: Switching to natalizumab or immunosuppressants in patients with breakthrough disease is effective in reducing clinical activity of relapsing MS. The magnitude of the effect and the risk-benefit ratio should be evaluated in randomized clinical trials and prospective cohort studies
The oxysterol 27-hydroxycholesterol increases β-amyloid and oxidative stress in retinal pigment epithelial cells
<p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) and age-related macular degeneration (AMD) share several pathological features including β-amyloid (Aβ) peptide accumulation, oxidative damage, and cell death. The causes of AD and AMD are not known but several studies suggest disturbances in cholesterol metabolism as a culprit of these diseases. We have recently shown that the cholesterol oxidation metabolite 27-hydroxycholesterol (27-OHC) causes AD-like pathology in human neuroblastoma SH-SY5Y cells and in organotypic hippocampal slices. However, the extent to which and the mechanisms by which 27-OHC may also cause pathological hallmarks related to AMD are ill-defined. In this study, the effects of 27-OHC on AMD-related pathology were determined in ARPE-19 cells. These cells have structural and functional properties relevant to retinal pigmented epithelial cells, a target in the course of AMD.</p> <p>Methods</p> <p>ARPE-19 cells were treated with 0, 10 or 25 μM 27-OHC for 24 hours. Levels of Aβ peptide, mitochondrial and endoplasmic reticulum (ER) stress markers, Ca<sup>2+ </sup>homeostasis, glutathione depletion, reactive oxygen species (ROS) generation, inflammation and cell death were assessed using ELISA, Western blot, immunocytochemistry, and specific assays.</p> <p>Results</p> <p>27-OHC dose-dependently increased Aβ peptide production, increased levels of ER stress specific markers caspase 12 and gadd153 (also called CHOP), reduced mitochondrial membrane potential, triggered Ca<sup>2+ </sup>dyshomeostasis, increased levels of the nuclear factor κB (NFκB) and heme-oxygenase 1 (HO-1), two proteins activated by oxidative stress. Additionally, 27-OHC caused glutathione depletion, ROS generation, inflammation and apoptotic-mediated cell death.</p> <p>Conclusions</p> <p>The cholesterol metabolite 27-OHC is toxic to RPE cells. The deleterious effects of this oxysterol ranged from Aβ accumulation to oxidative cell damage. Our results suggest that high levels of 27-OHC may represent a common pathogenic factor for both AMD and AD.</p
Epigallocatechin-3-gallate: a useful, effective and safe clinical approach for targeted prevention and individualised treatment of neurological diseases?
Neurodegenerative disorders show an increasing prevalence in a number of highly developed countries. Often, these diseases require life-long treatment mostly with drugs which are costly and mostly accompanied by more or less serious side-effects. Their heterogeneous manifestation, severity and outcome pose the need for individualised treatment options. There is an intensive search for new strategies not only for treating but also for preventing these diseases. Green tea and green tea extracts seem to be such a promising and safe alternative. However, data regarding the beneficial effects and possible underlying mechanism, specifically in clinical trials, are rare and rather controversial or non-conclusive. This review outlines the existing evidence from preclinical studies (cell and tissue cultures and animal models) and clinical trials regarding preventive and therapeutic effects of epigallcatechin-3-gallate in neurodegenerative diseases and considers antioxidative vs. pro-oxidative properties of the tea catechin important for dosage recommendations
X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients
Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern
- …