10 research outputs found
Distinct Clinical and Pathological Features Are Associated with the BRAFT1799A(V600E) Mutation in Primary Melanoma
The BRAFT1799A mutation encodes BRAFV600E that leads to activation of the mitogen-activated protein kinase pathway. This study aimed to assess the clinico-pathological features of primary invasive melanomas containing the BRAFT1799A mutation. Patients (n=251) with invasive primary melanomas from Australia were interviewed and examined with respect to their melanoma characteristics and risk factors. Independent review of pathology, allele-specific PCR for the BRAFT1799A mutation, immunohistochemical staining with Ki67, and phospho-histone-H3 (PH3) were performed. The BRAFT1799A mutation was found in 112 (45%) of the primary melanomas. Associations with the BRAFT1799A mutation (P<0.05) were as follows: low tumor thickness (odds ratio (OR)=3.3); low mitotic rate (OR=2.0); low Ki67 score (OR=5.0); low PH3 score (OR=3.3); superficial spreading melanoma (OR=10.0); pigmented melanoma (OR=3.7); a lack of history of solar keratoses (OR=2.7); a location on the trunk (OR=3.4) or extremity (OR=2.0); a high level of self-reported childhood sun exposure (OR=2.0); ≤50 years of age (OR=2.5); and fewer freckles (OR=2.5). We conclude that the BRAFT1799A mutation has associations with host phenotype, tumor location, and pigmentation. Although implicated in the control of the cell cycle, the BRAFT1799A mutation is associated with a lower rate of tumor proliferation
Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma
The molecular basis for the inverse relationship between differentiation and tumorigenesis is unknown. The function of runx2, a master regulator of osteoblast differentiation belonging to the runt family of tumor suppressor genes, is consistently disrupted in osteosarcoma cell lines. Ectopic expression of runx2 induces p27KIP1, thereby inhibiting the activity of S-phase cyclin complexes and leading to the dephosphorylation of the retinoblastoma tumor suppressor protein (pRb) and a G1 cell cycle arrest. Runx2 physically interacts with the hypophosphorylated form of pRb, a known coactivator of runx2, thereby completing a feed-forward loop in which progressive cell cycle exit promotes increased expression of the osteoblast phenotype. Loss of p27KIP1 perturbs transient and terminal cell cycle exit in osteoblasts. Consistent with the incompatibility of malignant transformation and permanent cell cycle exit, loss of p27KIP1 expression correlates with dedifferentiation in high-grade human osteosarcomas. Physiologic coupling of osteoblast differentiation to cell cycle withdrawal is mediated through runx2 and p27KIP1, and these processes are disrupted in osteosarcoma
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK
Background
A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
Methods
This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
Findings
Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
Interpretation
ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials
Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
Brca1 inactivation induces p27Kip1-dependent cell cycle arrest and delayed development in the mouse mammary gland
One common characteristic of breast cancers arising in carriers of the predisposition gene BRCA1 is a loss of expression of the CDK inhibitor p27(Kip1) (p27), suggesting that p27 interacts epistatically with BRCA1. To investigate this relationship, we examined expression of p27 in mice expressing a dominant negative allele of Brca1 (MMTV-trBr) in the mammary gland. While these mice rarely develop tumors, they showed a 50% increase in p27 protein and a delay in mammary gland development associated with reduced proliferation. In contrast, on a p27 heterozygote background, MMTV-trBrca1 mice showed an increase in S phase cells, and normal mammary development. p27 was the only protein in the cyclin cyclin-dependent kinase network to show altered expression, suggesting that it may be a central mediator of cell cycle arrest in response to loss of function of BRCA1. Furthermore, in human mammary epithelial MCF7 cells expressing BRCA1-specific RNAi and in the BRCA1-deficient human tumor cell line HCC1937, p27 is elevated at the mRNA level compared to cells expressing wild-type BRCA1. We hypothesize that disruption of BRCA1 induces an increase in p27 that inhibits proliferation. Accordingly, reduction in p27 expression leads to enhancement of cellular proliferation in the absence of BRCA1
Molecular Profiling of Giant Cell Tumor of Bone and the Osteoclastic Localization of Ligand for Receptor Activator of Nuclear Factor κB
Giant cell tumor of bone (GCT) is a generally benign, osteolytic neoplasm comprising stromal cells and osteoclast-like giant cells. The osteoclastic cells, which cause bony destruction, are thought to be recruited from normal monocytic pre-osteoclasts by stromal cell expression of the ligand for receptor activator of nuclear factor κB (RANKL). This model forms the foundation for clinical trials in GCTs of novel cancer therapeutics targeting RANKL. Using expression profiling, we identified both osteoblast and osteoclast signatures within GCTs, including key regulators of osteoclast differentiation and function such as RANKL, a C-type lectin, osteoprotegerin, and the wnt inhibitor SFRP4. After ex vivo generation of stromal- and osteoclast-enriched cultures, we unexpectedly found that RANKL mRNA and protein were more highly expressed in osteoclasts than in stromal cells, as determined by expression profiling, flow cytometry, immunohistochemistry, and reverse transcriptase-polymerase chain reaction. The expression patterns of molecules implicated in signaling between stromal cells and monocytic osteoclast precursors were analyzed in both primary and fractionated GCTs. Finally, using array-based comparative genomic hybridization, neither GCTs nor the derived stromal cells demonstrated significant genomic gains or losses. These data raise questions regarding the role of RANKL in GCTs that may be relevant to the development of molecularly targeted therapeutics for this disease
The lewis-Y carbohydrate antigen is expressed by many human tumors and can serve as a target for genetically redirected T cells despite the presence of soluble antigen in serum
In this study we aimed to determine the suitability of the Lewis-Y carbohydrate antigen as a target for immunotherapy using genetically redirected T cells. Using the 3S193 monoclonal antibody and immunohistochemistry, Lewis-Y was found to be expressed on a range of tumors including 42% squamous cell lung carcinoma, 80% lung adenocarcinoma, 25% ovarian carcinoma, and 25% colorectal adenocarcinoma. Expression levels varied from low to intense on between 1% and 90% of tumor cells. Lewis- was also found in soluble form in sera from both normal donors and cancer patients using a newly developed enzyme-linked immunosorbent assay. Serum levels in patients was often less than 1á mg/mL, similar to normal donors, but approximately 30% of patients had soluble Lewis-Y levels exceeding 1áng/mL and up to 9á mg/mL. Lewis-Y-specific human T cells were generated by genetic modification with a chimeric receptor encoding a single-chain humanized antibody linked to the T-cell signaling molecules, T-cell receptor-zeta, and CD28. T cells responded against the Lewis-Y antigen by cytokine secretion and cytolysis in response to tumor cells. Importantly, the T-cell response was not inhibited by patient serum containing soluble Lewis-Y. This study demonstrates that Lewis-Y is expressed on a large number of tumors and Lewis-Y-specific T cells can retain antitumor function in the presence of patient serum, indicating that this antigen is a suitable target for this form of therapy
Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice
Wnt signaling increases bone mass by stimulating osteoblast lineage commitment and
expansion and forms the basis for novel anabolic therapeutic strategies being
developed for osteoporosis. These strategies include derepression of Wnt signaling by
targeting secreted Wnt pathway antagonists, such as sclerostin. However, such
therapies are associated with safety concerns regarding an increased risk of
osteosarcoma, the most common primary malignancy of bone. Here, we analyzed 5 human
osteosarcoma cell lines in a high-throughput screen for epigenetically silenced tumor
suppressor genes and identified Wnt inhibitory factor 1 (WIF1),
which encodes an endogenous secreted Wnt pathway antagonist, as a candidate tumor
suppressor gene. In vitro, WIF1 suppressed β-catenin levels in human
osteosarcoma cell lines, induced differentiation of human and mouse primary
osteoblasts, and suppressed the growth of mouse and human osteosarcoma cell lines.
Wif1 was highly expressed in the developing and mature mouse skeleton, and, although
it was dispensable for normal development, targeted deletion of mouse
Wif1 accelerated development of radiation-induced osteosarcomas in
vivo. In primary human osteosarcomas, silencing of WIF1 by promoter
hypermethylation was associated with loss of differentiation, increased
β-catenin levels, and increased proliferation. These data lead us to
suggest that derepression of Wnt signaling by targeting secreted Wnt antagonists in
osteoblasts may increase susceptibility to osteosarcoma