15 research outputs found
A new mutant genetic resource for tomato crop improvement by TILLING technology
<p>Abstract</p> <p>Background</p> <p>In the last decade, the availability of gene sequences of many plant species, including tomato, has encouraged the development of strategies that do not rely on genetic transformation techniques (GMOs) for imparting desired traits in crops. One of these new emerging technology is TILLING (Targeting Induced Local Lesions In Genomes), a reverse genetics tool, which is proving to be very valuable in creating new traits in different crop species.</p> <p>Results</p> <p>To apply TILLING to tomato, a new mutant collection was generated in the genetic background of the processing tomato cultivar Red Setter by treating seeds with two different ethylemethane sulfonate doses (0.7% and 1%). An associated phenotype database, LycoTILL, was developed and a TILLING platform was also established. The interactive and evolving database is available online to the community for phenotypic alteration inquiries. To validate the Red Setter TILLING platform, induced point mutations were searched in 7 tomato genes with the mismatch-specific ENDO1 nuclease. In total 9.5 kb of tomato genome were screened and 66 nucleotide substitutions were identified. The overall mutation density was estimated and it resulted to be 1/322 kb and 1/574 kb for the 1% EMS and 0.7% EMS treatment respectively.</p> <p>Conclusions</p> <p>The mutation density estimated in our collection and its comparison with other TILLING populations demonstrate that the Red Setter genetic resource is suitable for use in high-throughput mutation discovery. The Red Setter TILLING platform is open to the research community and is publicly available via web for requesting mutation screening services.</p
Classification of HIV-1 Sequences Using Profile Hidden Markov Models
Accurate classification of HIV-1 subtypes is essential for studying the dynamic spatial distribution pattern of HIV-1 subtypes and also for developing effective methods of treatment that can be targeted to attack specific subtypes. We propose a classification method based on profile Hidden Markov Model that can accurately identify an unknown strain. We show that a standard method that relies on the construction of a positive training set only, to capture unique features associated with a particular subtype, can accurately classify sequences belonging to all subtypes except B and D. We point out the drawbacks of the standard method; namely, an arbitrary choice of threshold to distinguish between true positives and true negatives, and the inability to discriminate between closely related subtypes. We then propose an improved classification method based on construction of a positive as well as a negative training set to improve discriminating ability between closely related subtypes like B and D. Finally, we show how the improved method can be used to accurately determine the subtype composition of Common Recombinant Forms of the virus that are made up of two or more subtypes. Our method provides a simple and highly accurate alternative to other classification methods and will be useful in accurately annotating newly sequenced HIV-1 strains
TILLING - a shortcut in functional genomics
Recent advances in large-scale genome sequencing projects have opened up new possibilities for the application of conventional mutation techniques in not only forward but also reverse genetics strategies. TILLING (Targeting Induced Local Lesions IN Genomes) was developed a decade ago as an alternative to insertional mutagenesis. It takes advantage of classical mutagenesis, sequence availability and high-throughput screening for nucleotide polymorphisms in a targeted sequence. The main advantage of TILLING as a reverse genetics strategy is that it can be applied to any species, regardless of its genome size and ploidy level. The TILLING protocol provides a high frequency of point mutations distributed randomly in the genome. The great mutagenic potential of chemical agents to generate a high rate of nucleotide substitutions has been proven by the high density of mutations reported for TILLING populations in various plant species. For most of them, the analysis of several genes revealed 1 mutation/200–500 kb screened and much higher densities were observed for polyploid species, such as wheat. High-throughput TILLING permits the rapid and low-cost discovery of new alleles that are induced in plants. Several research centres have established a TILLING public service for various plant species. The recent trends in TILLING procedures rely on the diversification of bioinformatic tools, new methods of mutation detection, including mismatch-specific and sensitive endonucleases, but also various alternatives for LI-COR screening and single nucleotide polymorphism (SNP) discovery using next-generation sequencing technologies. The TILLING strategy has found numerous applications in functional genomics. Additionally, wide applications of this throughput method in basic and applied research have already been implemented through modifications of the original TILLING strategy, such as Ecotilling or Deletion TILLING
EcoTILLING in Capsicum species: searching for new virus resistances
<p>Abstract</p> <p>Background</p> <p>The EcoTILLING technique allows polymorphisms in target genes of natural populations to be quickly analysed or identified and facilitates the screening of genebank collections for desired traits. We have developed an EcoTILLING platform to exploit <it>Capsicum </it>genetic resources. A perfect example of the utility of this EcoTILLING platform is its application in searching for new virus-resistant alleles in <it>Capsicum </it>genus. Mutations in translation initiation factors (eIF4E, eIF(iso)4E, eIF4G and eIF(iso)4G) break the cycle of several RNA viruses without affecting the plant life cycle, which makes these genes potential targets to screen for resistant germplasm.</p> <p>Results</p> <p>We developed and assayed a cDNA-based EcoTILLING platform with 233 cultivated accessions of the genus <it>Capsicum</it>. High variability in the coding sequences of the <it>eIF4E </it>and <it>eIF(iso)4E </it>genes was detected using the cDNA platform. After sequencing, 36 nucleotide changes were detected in the CDS of <it>eIF4E </it>and 26 in <it>eIF(iso)4E</it>. A total of 21 <it>eIF4E </it>haplotypes and 15 <it>eIF(iso)4E </it>haplotypes were identified. To evaluate the functional relevance of this variability, 31 possible eIF4E/eIF(iso)4E combinations were tested against <it>Potato virus Y</it>. The results showed that five new <it>eIF4E </it>variants (<it>pvr2<sup>10</sup></it>, <it>pvr2<sup>11</sup></it>, <it>pvr2<sup>12</sup></it>, <it>pvr2<sup>13 </sup></it>and <it>pvr2<sup>14</sup></it>) were related to PVY-resistance responses.</p> <p>Conclusions</p> <p>EcoTILLING was optimised in different <it>Capsicum </it>species to detect allelic variants of target genes. This work is the first to use cDNA instead of genomic DNA in EcoTILLING. This approach avoids intronic sequence problems and reduces the number of reactions. A high level of polymorphism has been identified for initiation factors, showing the high genetic variability present in our collection and its potential use for other traits, such as genes related to biotic or abiotic stresses, quality or production. Moreover, the new <it>eIF4E </it>and <it>eIF(iso)4E </it>alleles are an excellent collection for searching for new resistance against other RNA viruses.</p
Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
Morphological, physiological and oxidative stress markers during acclimatization and field transfer of micropropagated Tuberaria major plants
Tuberaria major (Willk.) P. Silva and Rozeira is a critically-endangered rock rose species endemic to Portugal. Because the species needs to be preserved, this study evaluated the morphological and physiological traits of micropropagated T. major plants during acclimatization and field transfer. There were no significant differences between wild and micropropagated plants in the field, although the latter underwent significant changes during acclimatization. Leaf pubescence and leaf mass per area increased during acclimatization whereas the chlorophyll content and chlorophyll/carotenoid ratio declined to eventually match those of wild plants. Stomatal conductance (g(s)) and transpiration rates (E) also declined substantially during acclimatization, thus preventing uncontrolled wilting. Photosynthetic rate (P-N) was initially negative but increased during the later stages of acclimatization. Maximum quantum yield of PSII (F-v/F-m) remained constant at 0.78-0.85, showing that the plants were healthy and unstressed. PSII quantum efficiency (I center dot(PSII)) was initially low but increased during acclimatization along with photosynthetic performance as the energy partitioning in PSII was adjusted. This was balanced by the decline in non-regulated energy dissipation (I center dot(NO)) from an initially high value. Electrolyte leakage and malondialdehyde content remained constant at similar levels in both groups of plants, but H2O2 levels were higher in the field, perhaps indicating the early induction of antioxidant defense systems. The present study shows that T. major has enough phenotypic plasticity to adapt to changing environments and that the procedure described herein can be used for the restoration and preservation of this species