83 research outputs found

    Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.

    Get PDF
    Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00751595

    Original Article

    Get PDF
    The pancreas taken from the frog (Rana nigromaculata) was fixed in 1% OsO_4 and sliced into ultrathin sections for electron microscopic studies. The following observations were made: 1. A great \u27number of minute granules found in the cytoplasm of a pancreatic cell were called the microsomes, which were divided into two types, the C-microsome and S-microsome. 2. Electron microsopic studies of the ergastoplasm showed that it is composed of the microsome granules and A-substance. The microsomes were seen embedded in the A-substance which was either filamentous or membranous. The membranous structure, which was called the Am-membrane, was seen to form a sac, with a cavity of varying sizes, or to form a lamella. 3. The Am-membrane has close similarity to α-cytomembrane of Sjostrand, except that the latter is rough-surfaced. It was deduced that the Am-membrane, which is smooth-surfaced, might turn into the rough-surfaced α-cytomembrane. 4. There was the Golgi apparatus in the supranuclear region of a pancreatic cell. It consisted of the Golgi membrane, Golgi vacuole and. Golgi vesicle. 5. The mitochondria of a pancreatic cell appeared like long filaments, and some of them were seen to ramify. 6. The membrane of mitochondria, i. e. the limiting membrane, consisted of the Ammembrane. The mitochondria contained a lot of A-substances, as well as the C-microsomes and S-microsomes. When the mitochondria came into being, there appeared inside them chains of granules, which appeared like strips of beads, as the outgrowths of the A-substance and the microsome granules attached to the Am-membrane. They are the so-called cristae mitochondriales. 7. The secretory granules originate in the microsomes. They came into being when the microsomes gradually thickened and grew in size as various substances became adhered to them. Some of the secretory granules were covered with a membrane and appeared like what they have called the intracisternal granule of Palade.It seemed that this was a phenomenon attendant upon the dissolution and liqutefaction of the secretory granule. 8. Comparative studies were made of the ergastoplasm of the pancreatic cells from the frogs in hibernation, the frogs artificially hungered, the frogs which were given food after a certain period of fasting, the frogs to which pilocarpine was given subcutaneously, and the very young, immature frogs. The studies revealed that the ergastoplasm of the pancreatic cells greatly varied in form with the difference in nutritive condition and with different developmental stages of the cell. The change in form and structure occured as a result of transformation of the microsomes and A-substance. The ergastoplasm, even after it has come into being, might easily be inactivated if nutrition is defective. The ergastoplasm is concerned in the secretory mechanism, which is different from the secretory phenomenon of the secretory granules. It would seem that structurally the mitochondria have no direct relation to this mechanism

    HIV-1 Tat immunization restores immune homeostasis and attacks the HAART-resistant blood HIV DNA: results of a randomized phase II exploratory clinical trial

    Get PDF

    HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4+ T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial

    Full text link

    CONTRACTILE RESPONSE OF PERITUBULAR MYOID CELLS TO PROSTAGLANDIN F2alfa

    No full text
    Prostaglandin (PG) F2alpha, a well known agonist of smooth muscle, is produced in the male gonad. We have investigated whether PG F2alpha stimulates seminiferous tubule contractility through direct action on peritubular myoid cells. Myoid cells from prepubertal rats were highly purified through Percoll density gradient and cultured in vitro. Stimulation with PG F2alpha was observed to induce: (i) rapid and dose-dependent production of inositol phosphates; (ii) mobilization of Ca2+ from intracellular stores and (iii) cell contraction. Moreover, at a concentration of 10 microM the agonist was found to induce immediate contractile response of peritubular tissue in freshly explanted tubular fragments from both young and adult rats; the explants were examined in whole-mount preparations and the peritubular myoid cell layer was identified by selective staining for alkaline phosphatase activity. Our observations demonstrate that myoid cells are a direct target for PG F2alpha and suggest a role of the eicosanoid in the intragonadal control of seminiferous tubule contractility

    Platelet-Derived GrowthFactor-BB stimulates hypertrophy of peritubular smooth muscle cells from rat testis in primary cultures

    No full text
    The tunica propria of seminiferous tubules contains a particular type of smooth muscle cell (myoid cells) arranged in a contractile epithelioid layer that is responsible for sperm and tubular fluid flow. Unlike other types of smooth muscle (SM) cells, highly purified populations of peritubular smooth muscle cells (PSMC) survive and maintain their contractile phenotype in primary cultures in controlled conditions. We used this culture model to investigate the response of the SM contractile phenotype to prolonged exposure to platelet-derived growth factor (PDGF), one of the main factors involved in vascular SM pathologies. We observed that 4-day continuous exposure of PSMC to PDGF-BB at nanomolar concentrations in plain medium enhances contractile phenotype traits and induces cell hypertrophy without inducing proliferation. In Northern and Western blotting experiments, SM-alpha-actin transcript and protein were found to be markedly increased in the PDGF-BB-treated samples, which is in line with the formation of conspicuous SM-alpha-actin-containing stress fibers. Moreover, binding sites for endothelin-1 were increased, and the calcium response to the contractile agonist, determined in single fura-2-loaded cells, was enhanced. In response to PDGF-BB, the cells underwent immediate, transient contraction, as seen in a scanning electron microscope, followed by a gradual increase in size, as evaluated by cytofluorometry, and enhancement of protein synthesis. The observed pattern of response to PDGF-BB was not accompanied by cell proliferation, as assessed by [3H]thymidine incorporation and direct cell counts. Unlike other SM cell types, in which proliferation and loss of contractile traits are induced by PDGF, chronic treatment of PSMC with this growth factor results in hypertrophy rather than hyperplasia

    Rat testicular myoid cells respond to endothelin: characterization of binding and signal transduction pathway.

    No full text

    Muscarinic receptors modulate intacellular calcium level in chick sensory neurons

    No full text
    In the present work we have studied the variation of intracellular calcium levels induced by muscarinic agonists in chick dorsal root ganglia neurons. Muscarinic agonists such as muscarine and oxotremorine cause an increase of intracellular calcium levels in fura-2AM-loaded DRG neurons of E18 chick embryos. This increase was abolished following treatment with 1 μM atropine but not by 1 μM mecamylamine, indicating that the observed intracellular calcium increase, was dependent on muscarinic receptor activation. Stimulation in absence of external calcium or pre-incubation of the DRG cultures with thapsigargin or Mn2+ demonstrated that [Ca2+]i increase is mainly due to its release from intracellular stores. The use of selective antagonists of muscarinic receptor subtypes also indicated that M1 and to a lesser extent M3 receptor subtypes are responsible for the observed intracellular calcium mobilization. Finally pre-treatment of DRG cultures with pertussis toxin showed that the variation of [Ca2+]i levels was dependent on PTX-insensitive G-protein. Moreover muscarinic agonists induce in DRG also the increase of IPs level, suggesting that the variations of intracellular calcium levels may be due at least in part to the activation of the phosphoinositide transduction pathway. In conclusion the reported observations demonstrate the activity of muscarinic receptors in sensory neurons, suggesting a functional role for acetylcholine in sensory transduction
    corecore