8 research outputs found

    Ferredoxin/ferredoxin–thioredoxin reductase complex : Complete NMR mapping of the interaction site on ferredoxin by gallium substitution

    Get PDF
    The reduction of ferredoxin–thioredoxin reductase (FTR) by plant-type ferredoxin plays an important role in redox regulation in plants and cyanobacteria. Nuclear magnetic resonance (NMR) was used to map the binding sites on Synechocystis ferredoxin for FTR. A gallium-substituted structural analog of this [2Fe–2S] ferredoxin was obtained by reconstituting the apoprotein in a refolding buffer containing gallium. For the first time, the complete interaction interface of a [2Fe–2S] ferredoxin with a target enzyme has been mapped by NMR chemical shift perturbation with this diamagnetic structural analog

    An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties: Ferredoxin with low Em discriminating against FNR

    No full text
    International audiencePhotosynthetic [2Fe-2S] plant-type ferredoxins have a central role in electron transfer between the photosynthetic chain and various metabolic pathways. Several genes are coding for [2Fe2S] ferredoxins in cyanobacteria, with four in the thermophilic cyanobacterium Thermosynechococcus elongatus. The structure and functional properties of the major ferredoxin Fd1 are well known but data on the other ferredoxins are scarce. We report the structural and functional properties of a novel minor type ferredoxin, Fd2 of T. elongatus, homologous to Fed4 from Synechocystis sp. PCC 6803. Remarkably, the midpoint potential of Fd2, Em = -440 mV, is lower than that of Fd1, Em = -372 mV. However, while Fd2 can efficiently react with photosystem I or nitrite reductase, time-resolved spectroscopy shows that Fd2 has a very low capacity to reduce ferredoxin-NADP+ oxidoreductase (FNR). These unique Fd2 properties are discussed in relation with its structure, solved at 1.38 Å resolution. The Fd2 structure significantly differs from other known ferredoxins structures in loop 2, N-terminal region, hydrogen bonding networks and surface charge distributions. UV-Vis, EPR, and Mid- and Far-IR data also show that the electronic properties of the [2Fe2S] cluster of Fd2 and its interaction with the protein differ from those of Fd1 both in the oxidized and reduced states. The structural analysis allows to propose that valine in the motif Cys53ValAsnCys56 of Fd2 and the specific orientation of Phe72, explain the electron transfer properties of Fd2. Strikingly, the nature of these residues correlates with different phylogenetic groups of cyanobacterial Fds. With its low redox potential and its discrimination against FNR, Fd2 exhibits a unique capacity to direct efficiently photosynthetic electrons to metabolic pathways not dependent on FNR
    corecore