17 research outputs found

    A Study of Cyber-Attack Resilience in a DER-Integrated Synthetic Grid Based on Industry Standards and Practices

    Get PDF
    The power transmission grid plays a pervasive role in modern society and its failure has a significant impact. In the past, the grid has been subjected to malicious attacks. With the increasing prevalence of distributed energy resources (DERs) and other renewable energy generation sources, there is a need to better understand the potential risks that arise due to the interdependencies and to develop mitigations. Hence, the objective of this work is to develop a methodology for modeling and analyzing DER threats, leveraging realistic electric grid models. This work develops a case study that models and evaluates situations of malicious DER failures and examines their impacts on steady state stability, voltage drop, and production and marginal costs related to analyzing the effects of DER failure. In this study, we consider the next-generation Low Voltage Ride-Through requirements for DERs as established by (North American Electric Reliability Corporation) NERC. These requirements dictate plausible DER modeling standards for bulk system stability studies. Further, we analyze the standard practices prevailing in the power system industry and use these to measure how to mitigate DER security and reliability challenges, as well as how to reduce the vulnerability of the system to blackouts during instances of cyber-attacks on increasing DER integration. Hence, this research provides a holistic study for the integration of DERs to the grid, analyzes the impact of cyber threat to DERs on the grid, and offers a simulation environment for further studies of DER interference to electric grid

    Prescribing trends of anti glaucoma medication usage in treatment naive patients of primary open angle glaucoma in a tertiary care hospital in Eastern India

    Get PDF
    Background: Primary open angle glaucoma remains a high magnitude healthcare problem due to its prevalence and chronicity. The real world scenario of anti glaucoma medical therapy needs periodical auditing as far as drug prescriptions are concerned for formulation of treatment guidelines. Few studies from India have taken a longitudinal approach in this respect. This study was undertaken to identify such lacunae.Methods: This was an open label, prospective, observational study. Each treatment naive patient was followed up for a period of 6 months, where their prescriptions were scanned for the type of the anti glaucoma medications, total number of medications, route of administration, their duration of use and their frequency of dosage and change in medications if any, in each visits.Results: A gradual shift from monotherapy towards combination therapy was observed. Overall averages for prescriptions were topped by monotherapy at 44.25 followed by fixed dose combinations at 38.25, and then combination-polytherapy at 36 and the least number of prescriptions were for concurrent polytherapy at 17.5. Amongst all monotherapy agents, beta blockers were the most frequently prescribed drugs at baseline but their share of prescriptions was almost halved at the end of our study. The prostaglandin analogs on the other hand saw an upsurge in prescriptions from their baseline to the end of this study. Prostaglandin analogs andbeta blockers as fixed dose combination was a popular prescription over the entire study duration.Conclusions: Prescribing trends were remarkable for the shift from primary monotherapy towards fixed dose combinations as the study concluded. The decline in the number of beta blocker prescriptions and a rise in prostaglandin analog prescriptions is a testament to their better effectiveness and tolerability. The future of open angle glaucoma pharmacotherapy lies in prescribing more efficacious drugs either in monotherapy or in fixed combinations

    cGAS-STING pathway targeted therapies and their applications in the treatment of high-grade glioma

    Get PDF
    Median survival of patients with glioblastoma (GBM) treated with standard of care which consists of maximal safe resection of the contrast-enhancing portion of the tumor followed by radiation therapy with concomitant adjuvant temozolomide (TMZ) remains 15 months. The tumor microenvironment (TME) is known to contain immune suppressive myeloid cells with minimal effector T cell infiltration. Stimulator of interferon genes (STING) is an important activator of immune response and results in production of Type 1 interferon and antigen presentation by myeloid cells. This review will discuss important developments in STING agonists, potential biomarkers for STING response, and new combinatorial therapeutic approaches in gliomas

    In NPH, setting valve opening pressure close to lumbar puncture opening pressure decreases overdrainage

    Get PDF
    Background. The management of normal pressure hydrocephalus (NPH) can be difficult, partly because there are frequent treatment complications such as overdrainage which, when serious, may require surgical intervention. We previously reported a correlation between the difference of lumbar puncture opening pressure minus the valve opening pressure setting (LPOP–VOP) (which we refer to as the delta) and increased rates of overdrainage. This led to a modification in our practice, whereby we now set the VOP equal to, or close to, the LPOP, resulting in lower deltas. Objective. In this new study, our aim was to compare the rate of overdrainage in our patients with higher and lower deltas and assess the significance of setting the VOP equal, or close, to the patient’s LPOP. Methods. 1. We reproduced the association between delta and overdrainage. 2. We compared the incidence of overdrainage in those whose VOP was set close to LPOP (low delta) versus those with VOP setting distant from the LPOP (higher delta). 3. We compared symptom improvement in those with a low versus higher delta. Results. We confirmed the relation between high delta and an increased rate of overdrainage, lower rates of overdrainage in those whose VOP was set close to the LPOP (Delta Adjusted Practice), and better improvement of symptoms when the VOP was set closer to the LPOP. Conclusion. We propose that the initial VOP should be set as close as possible to the patient’s LPOP to decrease overdrainage without compromising symptom improvement

    Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation

    Full text link
    [ES] Los estudios realizados en el pasado han demostrado que, a pesar de tener cero emisiones del tubo de escape, un vehículo completamente eléctrico tiene emisiones durante el ciclo de vida. El desarrollo tecnológico a lo largo de los años por parte de la humanidad ha llevado constantemente a un aumento de la dependencia energética. Desafortunadamente, esta energía proviene principalmente de fuentes fósiles. Uno de los principales consumidores de energía de origen fósil es la industria del transporte, que utiliza petróleo y diesel como combustibles. Estos combustibles se queman en motores de combustión interna para producir energía debido a su alto poder calorífico. Dado que estos son combustibles a base de carbono, genera dióxido de carbono durante el proceso, que es un gas de efecto invernadero. Por lo tanto, ha habido un seguimiento y una regulación muy estrictos de los tubos de escape de los automóviles a lo largo de los años. Recientemente, diferentes regiones del mundo han planeado prohibir la venta de vehículos convencionales basados en motores de combustión interna. Por lo tanto, vender solo vehículos con cero emisiones de escape, como vehículos eléctricos de batería y vehículos eléctricos de pila de combustible. Esto se debe principalmente a la intensidad de las emisiones de la combinación de electricidad, para alimentar las baterías y el proceso de fabricación de baterías para vehículos eléctricos de batería. Mientras que los vehículos eléctricos de pila de combustible dependen de la intensidad de emisión de la producción de hidrógeno. Dado que la producción actual de hidrógeno es muy limitada y tiene un alto contenido de carbono, los vehículos eléctricos de batería son los preferidos para reemplazar a los vehículos con motor de combustión interna. Otra razón detrás del impulso de este cambio es la alta eficiencia de los sistemas de propulsión eléctricos. A pesar de eso, es muy difícil para los vehículos eléctricos de batería igualar el rango de conducción de los vehículos con motor de combustión interna debido a la gran diferencia en la densidad de energía de las baterías y los combustibles líquidos. En condiciones reales de conducción, este rango de conducción es aún más reducido, a pesar de tener grandes paquetes de baterías a bordo. Esta es una limitación importante para el uso de vehículos eléctricos de batería, hasta que se desarrolle una infraestructura de carga extensa. Por ello, en esta tesis se evalúa el potencial de reducción de emisiones de los vehículos eléctricos con un enfoque de ciclo de vida para turismos y autobuses. Esto se hace comparando sus emisiones con las de los vehículos diésel convencionales y eléctricos híbridos para ciclos de conducción reales utilizando simulaciones numéricas 0D. Esto se complementa con estudios del costo del ciclo de vida de los diferentes vehículos para ver qué opción de tren motriz puede ser más eficiente. Además, los combustibles sintéticos bajos en carbono también se están evaluando como una solución alternativa para reemplazar el combustible diesel y ver el cambio que puede traer al ciclo de vida de los vehículos con motor de combustión interna. Estas evaluaciones se realizan para diferentes ubicaciones a nivel mundial para observar los factores locales que afectan los resultados. Por lo tanto, este trabajo tiene como objetivo evaluar los resultados del ciclo de vida para los responsables políticos y los fabricantes de automóviles a nivel mundial, tanto de las emisiones como del costo, asociados con cada opción de tren motriz. Como resultado de esta investigación, se observan varios desafíos relacionados con los vehículos eléctricos de batería que deben abordarse antes de su adopción masiva. Por lo tanto, se propone el uso de vehículos híbridos como una solución a corto plazo para abordar la urgencia de reducción de emisiones globales. Lo cual, de hecho, también puede considerarse una solución a largo plazo si funciona con combustibles bajos en carbono.[CA] Els estudis realitzats en el passat han demostrat que, malgrat tenir zero emissions del tub d'escapament, un vehicle completament elèctric té emissions durant el cicle de vida. El desenvolupament tecnològic al llarg dels anys per part de la humanitat ha portat constantment a un augment de la dependència energètica. Desafortunadament, aquesta energia prové principalment de fonts fòssils. Un dels principals consumidors denergia dorigen fòssil és la indústria del transport, que utilitza petroli i dièsel com a combustibles. Aquests combustibles es cremen en motors de combustió interna per produir energia a causa del seu alt poder calorífic. Atès que són combustibles a base de carboni, genera diòxid de carboni durant el procés, que és un gas d'efecte hivernacle. Per tant, hi ha hagut un seguiment i una regulació molt estrictes dels tubs de fuga dels automòbils al llarg dels anys. Recentment, diverses regions del món han planejat prohibir la venda de vehicles convencionals basats en motors de combustió interna. Per tant, vendre només vehicles amb zero emissions d'escapament, com ara vehicles elèctrics de bateria i vehicles elèctrics de pila de combustible. Això es deu principalment a la intensitat de les emissions de la combinació delectricitat, per alimentar les bateries i el procés de fabricació de bateries per a vehicles elèctrics de bateria. Mentres que els vehicles elèctrics de pila de combustible depenen de la intensitat d'emissió de la producció d'hidrogen. Atès que la producció actual dhidrogen és molt limitada i té un alt contingut de carboni, els vehicles elèctrics de bateria són els preferits per reemplaçar els vehicles amb motor de combustió interna. Una altra raó darrere de l¿impuls d¿aquest canvi és l¿alta eficiència dels sistemes de propulsió elèctrics. Tot i això, és molt difícil per als vehicles elèctrics de bateria igualar el rang de conducció dels vehicles amb motor de combustió interna a causa de la gran diferència en la densitat denergia de les bateries i els combustibles líquids. En condicions reals de conducció, aquest rang de conducció encara és més reduït, tot i tenir grans paquets de bateries a bord. Aquesta és una limitació important per a lús de vehicles elèctrics de bateria, fins que es desenvolupi una infraestructura de càrrega extensa. Per això, en aquesta tesi s"avalua el potencial de reducció d"emissions dels vehicles elèctrics amb un enfocament de cicle de vida per a turismes i autobusos. Això es fa comparant les seves emissions amb les dels vehicles dièsel convencionals i elèctrics híbrids per a cicles de conducció reals utilitzant simulacions numèriques 0D. Això es complementa amb estudis del cost del cicle de vida dels diferents vehicles per veure quina opció de tren motriu pot ser més eficient. A més, els combustibles sintètics baixos en carboni també s'estan avaluant com a solució alternativa per reemplaçar el combustible dièsel i veure el canvi que pot portar al cicle de vida dels vehicles amb motor de combustió interna. Aquestes avaluacions es fan per a diferents ubicacions a nivell mundial per observar els factors locals que afecten els resultats. Per tant, aquest treball té per objectiu avaluar els resultats del cicle de vida per als responsables polítics i els fabricants d'automòbils a nivell mundial, tant de les emissions com del cost, associats amb cada opció de tren motriu. Com a resultat d'aquesta investigació, s'observen diversos desafiaments relacionats amb els vehicles elèctrics de bateria que cal abordar abans de la seva adopció massiva. Per tant, es proposa utilitzar vehicles híbrids com una solució a curt termini per abordar la urgència de reducció d'emissions globals. Això, de fet, també es pot considerar una solució a llarg termini si funciona amb combustibles baixos en carboni.[EN] Several studies in the past have shown that despite having zero tailpipe emissions in a fully electric vehicle, it does have emissions when evaluated on a life cycle basis. Technology development over the years by humankind has constantly led to an increase in energy dependence. Unfortunately, this energy comes mainly from fossil-based sources that are limited. One major consumer of fossil-based energy sources is the transportation industry, which uses fossil-based petrol and diesel as fuels. These fuels are burned in internal combustion engines to produce energy due to their high calorific value. Since these are carbon-based fuels, it generates carbon dioxide during the combustion process, which is a greenhouse gas and leads to global warming. Therefore, there has been very strict monitoring and regulation of its emissions from the automotive tailpipes over the years. In recent years, different regions across the world have planned to completely stop the sale of conventional internal combustion engine-based vehicles. Thus, selling only zero tailpipe emission vehicles such as battery electric vehicles and fuel cell electric vehicles. This is primarily due to the emission intensity of the electricity mix used to power the batteries and from the battery manufacturing process for battery electric vehicles. At the same time, the fuel cell vehicle depends mainly on the emission intensity of hydrogen production. Since current hydrogen production is very limited and carbon-intensive, battery electric vehicles are highly favoured to replace internal combustion engine vehicles soon. Another reason behind the push for this shift is the high efficiency of electric powertrains. Despite that, it is very challenging for battery electric vehicles to match the driving range of internal combustion engine vehicles due to the large difference in the energy density of batteries and liquid fuels, currently. Further, in real driving conditions, this driving range is even more reduced for electric vehicles, even after having large battery packs on board. This is a major limitation for battery electric vehicles, especially for the ones meant for long haul routes, until an extensive charging infrastructure is developed. Therefore, in this thesis, the emission reduction potential of electric vehicles is evaluated following a life cycle approach for passenger cars and city buses. This is done by comparing their emissions with that of conventional diesel and hybrid electric vehicles for real driving cycles by means of 0D numerical simulations. This is complemented with life cycle cost studies for the different vehicles to see which powertrain option can be efficient in terms of emissions but also cost. Moreover, low-carbon synthetic fuels are also evaluated as an alternative drop-in solution to replace diesel fuel and see the change it can bring on a life cycle basis for hybrid and conventional internal combustion engine vehicles. These evaluations are done for different locations globally to observe the local factors that affect the results of each powertrain option for the two vehicle segments. Thus, this work is intended to evaluate the life cycle results for the policymakers and automobile manufacturers globally, for the emissions as well as the cost associated with each powertrain option. As an outcome of this research, several challenges are observed related to emissions and cost of the battery electric vehicles that need to be addressed before their mass adoption. Hence, the use of hybrid vehicles as a short-term solution to address the global emission reduction urgency is proposed for the road transportation sector. Which, in fact, may also be considered a long-term solution if powered with low-carbon fuels.Tripathi, S. (2023). Life Cycle Analysis of Different Powertrain Technologies for Decarbonising Road Transportation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19672

    Evaluación del potencial de descarbonización de diferentes tecnologías de autobuses y turismos utilizando ciclos de conducción reales

    Full text link
    [ES] La industria del automóvil está regulada por diferentes normativas en todo el mundo por sus emisiones de GEI que salen de los tubos de escape de los vehículos. Recientemente, teniendo en cuenta el objetivo a largo plazo de 2050 de alcanzar la neutralidad del carbono, se está poniendo un gran énfasis en el cambio a los vehículos eléctricos. En Europa, concretamente, el Green Deal propuesto por la Comisión Europea ha prohibido la venta de turismos con motor de combustión interna a partir de 2035. Asimismo, en Estados Unidos se ha fijado el objetivo de vender el 50% de los vehículos eléctricos en 2030. Estas políticas se aplican denominando a los VE como vehículos de cero emisiones (ZEV), basándose únicamente en sus emisiones de tanque a rueda. Sin embargo, si se tienen en cuenta las emisiones de todo el ciclo de vida, los VE tienen una cuota de emisiones considerable, y mucho mayor cuando se evalúan en ciclos de conducción real. La fuente de producción de electricidad es muy importante, ya que determina las emisiones del pozo al depósito, que pueden ser incluso superiores a las del combustible convencional. Por lo tanto, este estudio se lleva a cabo para estimar el potencial de reducción de las emisiones de CO2 de diferentes tecnologías de tren motriz para autobuses y turismos en ciclos de conducción real y considerando el ciclo de vida global. El software GT suite se utiliza para la evaluación del consumo de combustible en ciclos de conducción real utilizando información de velocidad del vehículo basada en GPS. Mientras que para la evaluación del ciclo de vida se utiliza la huella de emisiones del software de ACV GREET. Dado que la prohibición de la venta de vehículos con motor de combustión interna se aplica al sector de los turismos, se evalúan tres configuraciones de la cadena cinemática: Diesel convencional, híbrido y SUV eléctrico, así como el uso de combustible electrónico (como OMEx) en las cadenas cinemáticas ICE convencionales e híbridas. A continuación, se evalúa su potencial de reducción de emisiones en los Estados Unidos y en la UE, según los objetivos establecidos en ambas regiones. Además, el parque automovilístico actual se utiliza tanto en Estados Unidos como en la UE para comparar el potencial de reducción de emisiones teniendo en cuenta el cambio en el parque por la integración de los vehículos eléctricos según las políticas de objetivos establecidos para la venta de turismos nuevos. El nivel de reducción de las emisiones de CO2 se compara para el cambio en la flota por la adopción de los vehículos eléctricos, así como utilizando la misma tasa de adopción para los vehículos de motor de combustión electrónica, en ambas regiones. Los resultados muestran un mayor ahorro de los carburantes electrónicos en los Estados Unidos, mientras que el ahorro de los vehículos eléctricos es mayor en la UE, si se tienen en cuenta las emisiones del pozo a la rueda. Teniendo en cuenta las emisiones del ACV, el ahorro con los carburantes eléctricos es mayor en Estados Unidos y en la UE el ahorro de emisiones de los carburantes eléctricos y de los vehículos eléctricos es casi similar. Esto se debe principalmente a que la intensidad de las emisiones de carbono de la generación de electricidad en US es mayor que en la UE. Además, como la descarbonización del transporte pesado (camiones y autobuses) es un problema mayor, la evaluación se amplía a los autobuses para evaluar las diferentes configuraciones de la cadena cinemática y su potencial de reducción de las emisiones de CO2. En primer lugar, se evalúa la cadena cinemática de los autobuses Diesel convencionales, híbridos paralelos y totalmente eléctricos para evaluar las emisiones del ciclo de vida. 10 de las líneas de autobús más utilizadas en Sevilla, Madrid, Barcelona y Valencia se utilizan como ciclos de conducción para esta evaluación, lo que resulta en la evaluación del ciclo de vida en 40 ci[EN] The automotive industry is regulated by different regulations across the world for its GHG emissions coming out from the tailpipes of the vehicles. Recently, keeping in mind the 2050 long term goal to reach carbon neutrality, a huge emphasis is being given towards the shift to electric vehicles. In Europe specifically, the Green Deal proposed by the EU commission has put a ban on Internal Combustion Engine passenger cars¿ sale from 2035. Also, in the United States of America a target of 50% Electric Vehicle sales is set for 2030. These policies are implemented by referring EVs as Zero Emission Vehicles (ZEVs), based on its Tank-to-Wheel emissions only. However, if the entire life cycle emissions are considered, the EVs have a considerable share of emissions, and much higher when evaluated on Real Drive cycles. The source of electricity production is very important as it determines the Well-to-Tank emissions, which can be even higher than that of the conventional fuel. Hence, this study is carried out to estimate the CO2 emission reduction potential of different powertrain technologies for buses and passenger cars on real drive cycles and considering the overall life cycle. The GT suite software is used for the assessment of the fuel consumption on Real Drive cycles using GPS based vehicle speed information. While for the life cycle evaluation emission footprint from the LCA software GREET is used for the evaluation. As the ICE ban on new sales is done for the passenger car sector, evaluation is done of three powertrain configurations: Conventional Diesel, Hybrid and Electric SUV as well as using e-fuel (such as OMEx) in the Conventional and Hybrid ICE powertrains. Which is then evaluated for its emission reduction potential in the US as well as EU, according to the set targets in both regions. Further, the current automotive fleet is used for both the US and EU to compare the emission reduction potential considering the change in the fleet by the integration of electric vehicles according to the set target policies for the sale of new passenger cars. The CO2 emission reduction level is compared for the change in fleet by the adoption of EVs as well as using the same adoption rate for E-fuel powered ICE vehicles, in both the regions. Results shows higher savings from E-fuels in the US while higher savings from EVs in EU, when considering the Well-to-Wheel emissions. Considering the LCA emissions, using E-fuels the saving in US are higher and in EU the savings in emissions from E-fuels and EVs almost become similar. This is mainly because the carbon emission intensity of the electricity generation in the US is higher than that in EU. Moreover, as the decarbonisation of heavy-duty transportation (Trucks and Buses) is a bigger problem, the evaluation is further extended to Buses for the assessment of different powertrain configurations and its CO2 emission reduction potential. Firstly, the evaluation of Conventional Diesel, parallel hybrid and full electric bus powertrain is done for its life cycle emission evaluation. 10 of the most used bus lines in Seville, Madrid, Barcelona and Valencia are used as drive cycles for this evaluation, resulting in the life cycle assessment on 40 different drive cycles. As, the EU may soon enforce emission reduction target in the heavy-duty sector for the future years, a case study is performed for the bus fleet of Valencia to suggest the use of different powertrain technologies to meet the future targets. The evaluation also includes the use of E-fuels in ICE buses (conventional and hybrid). The optimisation of the bus fleet as well as the sizing of the E-motor and Battery is done to have the least emission value from the hybrid buses. It is found that using E-fuels instead of EVs is cheaper and more efficient way to meet the emission targets and for transport decarbonisation. Thus, it can be noted that for transport decarbonisation, the current way forward should be by using hybrid powertraiThe authors acknowledge the Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana for partially supporting this research through grant number GV/2020/017. Operación financiada por la Unión Europea a través del Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020 con el objetivo de promover el desarrollo tecnológico, la innovación y una investigación de calidad. Proyecto IDIFEDER/2020/034, Equipamiento Para El Desarrollo De Plantas Propulsivas Híbridas Limpias Y Eficientes A Través Del Uso De e-Fuels, entidad beneficiaria Universitat Politècnica de València.Tripathi, S. (2021). Decarbonisation Potential Evaluation of Different Powertrain Technologies for Buses and Passenger Cars Using Real Drive Cycles. Universitat Politècnica de València. http://hdl.handle.net/10251/178794TFG

    Life cycle CO2 footprint reduction comparison of hybrid and electric buses for bus transit networks

    Full text link
    [EN] To control the global warming by ensuring the greenhouse gas emissions reduction of the automotive sector, the standards or norms are getting ever stricter globally, specifically in the past few years. In view of this, great emphasis is currently being given to the shift towards electric vehicles. However, it is very important to critically evaluate the overall life cycle of different powertrain technologies. In this study, such analysis has been carried out for the bus rapid transit networks in the 4 largest cities of Spain: Madrid, Barcelona, Valencia and Seville. Ten different lines were selected from each city and their driving-cycles were designed by extracting real time data from GPS used for simulating 3 different bus powertrains (diesel, hybrid and electric) for real-life results of the vehicles on each route. A life cycle analysis of the different bus configurations was done considering a wide perspective from manufacturing, use, maintenance to end-of-life stages, to compare the CO2 footprints of the 3 evaluated powertrains using the database of the software GREET. The CO2 footprints of the electric bus was also estimated for the years 2030 and 2050, using the predictions for cleaner electricity grids for future perspective. Compared to the standard diesel bus results, the overall results for hybrid and electric bus show 40% decrement and 30% increment of CO2 well-to-tank emissions, respectively, 40% and 60% decrement of CO2 life cycle emissions; 30% increment and 60% decrement of the buses' driving range and, 2.5% and 30% addition in the life cycle cost.The authors acknowledge the Conselleria de Innovacion, Universidades, Ciencia y Sociedad Digital de la Generalitat Valenciana for partially supporting this research through grant number GV/2020/017. Operacion financiada por la Union Europea a traves del Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020 con el objetivo de promover el desarrollo tecnologico, la innovacion y una investigacion de calidad. Proyecto IDIFEDER/2020/34, Equipamiento Para El Desarrollo De Plantas Propulsivas Hibridas Limpias Y Eficientes A Traves Del Uso De e -Fuels, entidad beneficiaria Universitat Politecnica de Valencia.García Martínez, A.; Monsalve-Serrano, J.; Lago-Sari, R.; Tripathi, S. (2022). Life cycle CO2 footprint reduction comparison of hybrid and electric buses for bus transit networks. Applied Energy. 308:1-20. https://doi.org/10.1016/j.apenergy.2021.11835412030

    Pathways to achieve future CO2 emission reduction targets for bus transit networks

    Full text link
    [EN] Apart from electric vehicles, emissions targets for 2025 and 2030 in the heavy-duty transportation sector could be achieved with hybrid powertrains. Moreover, alternatives such as the use of synthetic or e-fuels may also offer a feasible path for transport decarbonization. This work explores different pathways to reduce CO2 emissions considering the city of Valencia as a case study. The 10 most used bus lines operating in the city are evaluated using their GPS based vehicle speed information with 0D GT Suite simulations. First, the hybridization level for the share of buses was varied from 0 to 100% and the number of different bus types operating in each line was optimised for minimum CO2. Next, the battery and E-motor sizing is optimised for each bus line. Further, an assessment was done assuming 100% electrified fleet, with the 2030 and 2050 electricity generation CO2 footprint projections. Moreover, the potential of e-fuels in the current fleet is also evaluated. The results show that to meet the 2050 target, 100% electrified fleet (with 2050 electricity mix) as well as using e-fuels (generated from renewable sources) in the current fleet are feasible options. However, the e-fuel pathway is more economical than 100% electric fleet.Operacion financiada por la Union Europea a traves del Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) de la Comunitat Valenciana 2014-2020 con el objetivo de promover el desarrollo tecnologico, la innovacion y una investigacion de calidad. Proyecto IDIFEDER/2020/34, Equipamiento para el desarrollo de plantas propulsivas hibridas limpias y eficientes a traves del uso de e-fuels, entidad beneficiaria Universitat Politecnica de ValenciaGarcía Martínez, A.; Monsalve-Serrano, J.; Lago Sari, R.; Tripathi, S. (2022). Pathways to achieve future CO2 emission reduction targets for bus transit networks. Energy. 244:1-16. https://doi.org/10.1016/j.energy.2022.12317711624

    The Reliability Of Youtube Videos In Patients Education For Glioblastoma Treatment

    No full text
    Background: Glioblastomas (GBMs) are one of the most devastating primary tumors in humans and often results in minimal survival rates. Over the past 2 decades, patients have accessed the internet to obtain information related to their diagnoses. In this study, we aimed to evaluate the accuracy and the reliability of GBM-related YouTube videos. Methods: In June of 2017, a search was conducted on YouTube using 6 keywords. Videos were sorted using “Relevance-Based Ranking” option, and the first 3 pages for each search were selected for further analysis. Three independent reviewers evaluated the videos using the validated DISCERN Tool. Results: After sorting 23,100 videos, 9 videos were identified and included for analysis. Of the 9 videos analyzed, 88% (8/9) were from hospitals affiliated with prestigious universities across the country. Of the nine videos included in the analysis, two (22%) scored above a 3. There was an average 55% overlap in the videos analyzed by key term and the keyword search of “Malignant Glioma Treatment” had the highest percentage of videos above a score of 3 (66%). Conclusion: Many patients with GBM and their families access information on YouTube to familiarize themselves with the epidemiology, survival, and treatment options for this form of tumor. However, the information that is currently available online is not monitored or vetted using an official filtering process prior to its release. Medical institutions must work to produce more peer-reviewed content in order to improve the availability of credible health information on internet platforms
    corecore