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Abstract 
Median survival of patients with glioblastoma (GBM) treated with 
standard of care which consists of maximal safe resection of the 
contrast-enhancing portion of the tumor followed by radiation 
therapy with concomitant adjuvant temozolomide (TMZ) remains 15 
months. The tumor microenvironment (TME) is known to contain 
immune suppressive myeloid cells with minimal effector T cell 
infiltration. Stimulator of interferon genes (STING) is an important 
activator of immune response and results in production of Type 1 
interferon and antigen presentation by myeloid cells. This review will 
discuss important developments in STING agonists, potential 
biomarkers for STING response, and new combinatorial therapeutic 
approaches in gliomas.
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Introduction
Current standard of care for glioblastoma (GBM) patients consists of maximal safe resection of the contrast-enhancing
portion of the tumor followed by radiation therapy with concomitant adjuvant temozolomide (TMZ).1–5 Multiple factors
influence GBM patient overall survival (OS), among which are age, Karnofsky Performance Score (KPS), extent of
resection achieved, additional therapy received, and tumor molecular determinants such as IDH-mutation and MGMT-
methylation status.6–13Despite improvements to surgical and radiation therapy, aswell as the development ofmany novel
biologic and chemical therapeutics, median survival of patients with GBM remains at approximately 15 months.14,15

Among biologic therapeutics, immunotherapies (IOs), such as immune checkpoint inhibitors, have had great success in
treating certain cancers, especiallymelanoma and lung carcinoma,16–20 but have not shown success in treatingGBM.21–23

Analysis of the immune cell composition of the GBM tumor microenvironment (TME) has provided information that
helps explain the poor response of GBM to immunotherapies.24 The GBM TME is highly enriched with immune
suppressive myeloid cells while lacking appreciable effector T cell infiltration.25 Targeting the TME myeloid cell
population to limit suppressor cell and enhance effector cell presence could be key to promoting antitumor immunity
against GBM.26

Stimulator of interferon genes (STING) is an important activator of immune response by promoting the production of
Type 1 interferon and antigen presentation by myeloid cells, which is necessary for T cell activation and effective tumor
cell killing.27–32 Recent studies have revealed that the cGAS-STING pathway activity is suppressed in GBM cells33 Its
activation is known to contribute to anti-tumoral immune response,30,31 and cGAS-STING pathway activation is
therefore an intriguing objective for IOs. The recent development of potent, clinical-grade STING agonists provides
an opportunity to explore STING activation as a GBM IO.24,31,34–38 This review will discuss important developments in
cGAS/STING pathway targeting, potential biomarkers indicative of cGAS/STING pathway activity, and new combi-
natorial therapeutic approaches for treating GBM that include agents for activating cGAS/STING.

Overview of cGAS-STING pathway
The innate immune system relies on the binding of pathogen-associated molecular patterns or cellular damage-associated
molecular patterns to Pattern Recognition Receptors (PRRs) for activation. PRRs include Toll-Like Receptors (TLRs)
and DNA sensors. cGAS, a DNA sensor, recognizes intracellular cytoplasmic DNA (cytDNA) from invading microbes
that have been taken up by antigen presenting cells (APCs), or that results from intrinsic genomic DNA damage
(Figure 1). Cellular damage increases circulating cDNA which can bind and activate cGAS. Activated cGAS converts
ATP and GTP into cyclic GMP-AMP (cGAMP), a second messenger39–41 that activates STING, also known as
TMEM173.42,43 Activated STING then triggers the production of type I IFNs and pro-inflammatory cytokines through
IRF3 and NF-kB activation.27 In multiple cancers, STING activation has been shown to repolarize macrophages from
tumor-promoting M2 type to anti-tumor M1 type.37,44 Recent reports have revealed that in addition to the type I IFN and
proinflammatory cytokine response, STING pathway activation can lead to cell apoptosis through an IRF3-mediated
mechanism.28 However, this proapoptotic effect appears to be cell-type specific and is primarily triggered in T cells.28

There is a need to investigate the pro-apoptotic function of STING pathway activation in the context of the GBM TME.

Tumor induced cGAS-STING pathway activation and immune function
DNA damage, leading to increased cytDNA, can arise from either intrinsic nuclear DNA leakage due to tumor cell
chromosomal instability or fromDNA damage induced by therapies such as radiation or chemotherapy32,45,46 (Figure 1).
cGAS pathway activation from cytDNA in tumor cells induces cellular senescence and/or intrinsic apoptotic response
through second mitochondria-derived activator of caspase and capase-3.47,48 Triggering of cGAS pathway activity in
tumor cells activates natural killer (NK) cell anti-cancer immunity through tumor cell IFN signaling that increases cell
surface presentation of NKG2D ligands such as retinoic acid early transcript 1, a structural homologue of MHC class
1, which functions as a co-stimulatory signal for NK and T cell activation.49 NKG2D+ NK cells recognize and bind to
NKG2D ligands expressed on tumor cells resulting in tumor cell killing.50 CD8+ T cell binding also occurs to tumor cell
NKG2D ligand. However, T cell activation also requires T cell receptor activation.51 cGAS-STING pathway activation
also occurs in TME-resident dendritic cells (DCs) that engulf circulating tumor DNA fragments or dying tumor cells29

(Figure 1). Such engulfment promotes an IFN response that triggers DC maturation and leads to stimulation of CD8+ T
cell anti-tumor activity.

Knocking out cGAS or STING in a murine mammary carcinoma model has been shown to inhibit anti-tumor immune
response due to inhibition of type I IFN release following radiation.32 STING knock out models have also been shown to
be defective in eliciting T cell response to gliomas and melanomas.29,31 Conversely, STING activation inversely
correlated with tumor myeloid-derived suppressor cell (MDSC) content and MDSC differentiation that can interfere
with STAT3 signaling in non-myeloid cells in the TME.34,52–54 In summary, cGAS-STING activation in immune cells
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through engulfment of dying tumor cells or tumor cell DNA leads to strong anti-tumor immunity and highlights activation
of cGAS-STING as an important aspect for ensuring cancer immunotherapy efficacy.

Targeting of cGAS-STING pathway as a cancer therapeutic
Initial preclinical studies using STING agonists involved cancer models in which agonists could be easily injected
intratumorally. Results from such studies showed that local STING agonist administration reduces tumor size and/or
increases survival for mice bearing melanoma, prostrate adenocarcinoma, gliomas, and head and neck squamous cell
carcinomas (HNSCC).31,35,38,55,56 Melanoma studies also showed that activation of STING in tumor cells and DCs
increases the infiltration of NK cells in the TME due to secretion of CXCL10 and CCL5 cytokines, whereas IL-33
secretion inhibited tumor growth.56 Notably, minimal CD8+ T cell activation was reported to accompany NK cell
migration.56

Preclinical research for activating cGAS-STING in GBM utilized a mesoporous silica nanoparticle carrying cyclic GMP
to stimulate STING.57 Injection of the nanoparticles resulted in complete response in 50% of flank GBM bearing mice.57

In the intracranial GL261-C57BL6 GBMmodel, intratumoral nanoparticle injection combined with anti-TGF-β receptor
1 inhibitor administration resulted in significant extension of animal subject survival.57 To increase glioma affinity and
specificityWang et al. developed nanoparticles loadedwith STINGagonist SR717 and that present RGERPPR, a glioma-
specific motif.58 This nanoparticle reduced tumor volume by over 50% and increased the 30-day survival rate of GL261
tumor bearing mice by more than 80%.58 Analysis of the TME in animal subjects revealed STING, IRF3, and TBK1,
along with increased proinflammatory cytokine levels.58 Promising STING agonist results have also been observed in
treating larger animal subjects. Specifically, the treatment of a canine suffering from spontaneously arising high-grade
glioma with two doses of ICAS-8779 at 20 ug produced a complete tumor response.38 Postmortem histopathologic
analysis of the tumor showed large increases in T cells and macrophages in the TME.38

Figure 1. cGAS-STING activation in dying tumor cells and APCs. STING activation in antigen presenting cells
(APC) occurs upon phagocytosis of tumor cells. In the phagosome, MHC loading occurs and there is subsequent
activation of T cells through T-cell Receptor (TCR) signaling. Degradation of tumor cells leads to the accumulation
of cytoplasmic double-stranded DNA (dsDNA). dsDNA activates cGAS triggering the conversion of ATP and GTP
into cyclic GMP-AMP (cGAMP), a secondmessenger. cGAMP activates STINGwhich translocates to nuclear compart-
ment triggering transcription of interferon stimulating genes (ISGs) and production of type I IFNs and proinflam-
matory cytokines through phosphorylation of IRF3 and NF-kB transcription factors. Similarly, within tumor cells,
cDNA accumulation occurs due to DNA damage from chromosome instability or treatment leading to cGAS-STING
pathway activation. Production of type I IFNs triggers the membrane translocation of retinoic acid early transcript
1 (RAE1), a NKG2D ligand which interacts with NK Cells resulting in their activation. Created with BioRender.com.
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With respect to cancer patient clinical trials targeting the STING pathway, most have involved the agonist 5,6-
Dimethylxanthenone-4-acetic acid (DMXAA). DMXAA was originally created as a vasculature disruption agent but
was incidentally discovered to directly bind to and activate STING in mouse model studies.59 Subsequent studies have
shown that DMXAA has a high affinity for murine STING but not for human STING,59 which accounts for the mostly
negative results from treating cancer patients with DMXAA (Table 1). Limited results are available from clinical trials
using other STING agonists. Results from the use ofMK-1454 were initially reported at the European Society ofMedical
Oncology Meeting in 2018 (NCT03010176).60 Treatment related adverse events occurred in 83% of monotherapy
patients as well as 82% of STING agonist plus anti-PD-1 therapy treated patients. No complete or partial responses were
reported in the STING monotherapy arm with 24% partial response for patients receiving dual therapy. The partial
responses occurred in three HNSCC, one triple negative breast carcinoma, and two anaplastic thyroid carcinoma patients;
treatment outcomes for other cancer types were not reported. In a Phase I, first-in-human multicenter open-label dose-
escalation study of ADU-S100, a maximum tolerated dose was not reached, but a partial response was confirmed in one
patient (2%) with Merkel cell carcinoma and stable disease was reported in 18 patients (38%) (NCT02675439).61 The
most common adverse events from ADU-S100 treatment were anemia, fatigue, nausea, and injection-site pain.

Table 1. STING agonists in clinical trials.

Agent Indication Phase Co-therapy Clinical trial Status

ADU-S100 Advanced Solid Tumors
Lymphoma

I Anti-PD-1 NCT03172936 Terminated

I Anti-CTLA-4 NCT02675439 Terminated

HNSC II Anti-PD-1 NCT03937141 Terminated

BMS-986301 Advanced Solid Tumors I Anti-PD-L1 Anti-
CTLA-4

NCT03956680 Recruiting

DMXAA Advanced Solid Tumors I NCT01290380 Terminated

I NCT01299701 Terminated

I NCT01278849 Terminated

I NCT01278758 Terminated

I Docetaxel NCT01285453 Completed

I Carboplatin
Paclitaxel
Docetaxel

NCT01240642 Terminated

Metastatic Cancer I NCT01278758 Terminated

NSCLC I Carboplatin
Paclitaxel

NCT00674102 Completed

I/II NCT00832494 Completed

III NCT00662597 Terminated

III Docetaxel NCT00738387 Terminated

Prostate Cancer II Docetaxel NCT00111618 Completed

Refractory Tumors I NCT00856336 Completed

Refractory I Carboplatin
Paclitaxel
Anti-EGFR

NCT01031212 Withdrawn

SCLC II Paclitaxel
Carboplatin

NCT01057342 Completed

Solid Tumors I NCT00003697 Completed

I NCT00863733 Completed

I NCT01299415 Terminated

E7766 Advanced Solid Tumors
Lymphoma

I NCT04144140 Recruiting

Bladder Cancer I NCT04109092 Withdrawn

GSK3745417 Advanced Solid Tumors I Anti-PD-1 NCT03843359 Recruiting
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Concerns regarding the use of STING agonists
The effects of chronic STING activation and release of proinflammatory cytokines are not fully understood. Reports
of STING depletion preventing cancer metastasis and long-term STING activation maintaining cancer stemness,62

promoting mesenchymal subtypes63 and treatment resistance46 highlight current knowledge gaps that need to be
addressed to help ensure the safe and effective use of STING agonists in treating cancer patients.46,62,63

In addition, research directed at drug delivery and cell population targeting needs further study. Currently, most available
STING agonists must be administered intratumorally due to bioavailability limitations associated with systemic
administration and poor metabolic stability.64–67 In addition, systemic delivery and activation of STING can result in
severe adverse side effects including autoimmunity and off-target inflammatory response. Some of the existing agonists
also have relatively poor cell membrane permeability. Newer oral formulations that are being tested may overcome dose-
limiting toxicities that have been reported in several clinical trials.66,67 Additionally, novel delivery platforms using
nanoparticles have been shown to improve stability and reduce off target effects/increase dose-response.58

On important consideration when developing STING agonists are species-specific differences in STING ligand affinity
and subsequent activation.59,68 Most preclinical models are conducted in mice, however, structural differences between
human and mouse STING have been linked to differential species-associated STING activation by DMXAA.59

In addition, a single nucleotide polymorphism (SNP) in STING has been reported in humans and affects type 1 IFN
production in 1–20% of the population.69–74 SNPs causing STINGmissense variants such as R232H, which is unable to
respond to c-di-AMP and 3030 cGAMP stimulation69 indicate the need to take patient genotypes into account when
considering STING agonist therapy. In total, species specific and human SNP variation need to be considered in
association with STING agonist development.

Targeting of cGAS-STING has focused on the development of STING agonists while cGAS has been relatively
underappreciated despite the potential of a cGAS-targeting therapeutic to more closely mimic STING signaling and
produce an endogenous 2,3-cGAMP. Research examining the effects of upstream targeting of cGAS is needed.75,76

Recent reports have shown that cGAMP, a product of cGAS activation, can activate DNAdamage response signaling that
is independent of canonical IFN pathway activity, and can induce noncanonical inflammasome pathways.75,76 In murine
colon cancer models cGAS deficiency has been associated with development of colon tumors, whereas STING and type I
IFN receptors knockouts show no significant increase in colon tumor rates.77 These results suggest cGAS as having
STING-independent and cancer-relevant activities. As noted above, STING polymorphisms need to be considered when
using STING agonists, whereas activation of cGAS would stimulate STING irrespective of patient-specific STING
polymorphisms. Still, as is the case for the development of STING agonists, structural differences in mouse and human
cGAS need to be considered to ensure proper drug development and productive outcome for the preclinical-to-clinical
translation of therapeutic.

Table 1. Continued

Agent Indication Phase Co-therapy Clinical trial Status

MK-1454 HNSC II Anti-PD-1 NCT04220866 Active

Advanced Solid Tumors
Lymphoma

I Anti-PD-1 NCT03010176 Active

MK2118 Advanced Solid Tumors
Lymphoma

I Anti-PD-1 NCT03249792 Recruiting

SB11285 Melanoma HNSC
Advanced Solid Tumors

I Anti-PD-L1 NCT04096638 Recruiting

SNX281 Advanced Solid Tumors
Lymphoma

I Anti-PD-1 NCT04609579 Recruiting

STAVs Loaded
Leukemic Cells

Leukemias I Dendritic Cell
Vaccine

NCT05321940 Not Yet
Recruiting

TAK-50 Adenocarcinoma HCC NSCLC
HNSC Mesothelioma TNBC

I Anti-PD-1 NCT05070247 Not Yet
Recruiting

TAK-676 Advanced Solid Tumors I Anti-PD-1 NCT04420884 Recruiting

NSCLC TNBC HNSC I Anti-PD-1
Radiotherapy

NCT04879849 Recruiting

Abbreviations: HCC, Hepatocellular Carcinoma; HNSC, Head and Neck Squamous Cell Carcinoma; NSCLC, Non-Small Cell Lung Cancer;
TNBC, Triple Negative Breast Cancer.
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Biomarkers of STING efficacy
For any cancer therapeutic the identification of biomarkers indicating therapeutic activity is a necessity for conducting
clinical studies. Since STING mutations occur in less than 1% of all cancers,33,78 cancer-associated STING variants are
of a lesser concern for variations in individual tumor response to STING agonist therapy. Potential biomarkers of
importance include STING promoter methylation status, patient gender, and composition of the TME including the
number/percent of glioma associated myeloid cells.

Epigenetic modifications of the STING gene that influence STING expression have been shown in several cancer types
as well as in STING-mediated chronic diseases.79–82 Analysis of CpG promotor sites using TCGA GBM Illumina
methylation array data reveal that methylation of STING cg16983159 is inversely correlated with STING expression.
Analysis of STING promoter methylation status could prove important to evaluating the factors that influence cancer
patient STING agonist response.

Epidemiological evidence supports a sex difference in GBM, where males have an increased prevalence and
poorer outcome.83 Recent studies identified differences between males and females due to genetic aberrations, cellular
programs and immune response. Sex is a known variable that affects both innate and adaptive immune responses.84 The
Immunological Genome Project data revealed transcriptional sexual dimorphism in theC56BL/6Jmousewhere the genes
of innate immune pathways increased before and after interferon stimulation in female macrophages.85 In preclinical
murine glioma models, sex specific preferential MDSC subtypes have been identified.86 In the peripheral blood of
female mice there are increased granulocytic (gMDSCs) and in male tumors there are increased monocytic (mMDSCs).
Depletion of gMDSCs showed OS benefit in females only.86 mMDSCs have been linked to radioresistance through
suppression of CD8+ T cell function in preclinical colon cancer models.87 As immune check point therapies have
emerged, the impact of sex differences on anti-cancer immune functions has begun to be elucidated. In cancers which are
responsive to immune checkpoint inhibitors (ICI), the ICI treatment is predominantly more effective in male compared to
female patients.88 As such, the efficacy of cGAS-STING agonists that are dependent on interferon stimulating genes
(ISGs) particularly in MDCS with combinatory approaches like ICI might also be a function of sex in GBM. Pre-clinical
therapeutic assessments would benefit from considering sex as a biological variable as these immunological studies may
reveal differences in efficacy and sex-specific resistance mechanisms to inform clinical use.

TME composition has been shown to influence tumor response to IO. A prototypical example involves PD-L1 expression
and the presence of tumor-infiltrating lymphocytes.89 For STING agonists, the presence of myeloid cell/APC infiltration
in the tumor is required for anti-tumor T cell response. TME immune cell composition can be determined through
immunohistochemistry or flow cytometry.90 The lack of information on TME cellular composition may have been a
confounder for prior Phase I clinical trials of first-generation STING agonists. There are also significant differences in
myeloid and T cell infiltration within the TME when comparing across cancers, which could be important in selecting
specific cancer patient populations for testing STING agonists (Figure 2). For example, melanoma and non-small cell
lung cancer are known responders to IOs and are also known for high T cell infiltration.16–20,91 In contrast, GBM are
preferentially enriched with myeloid cells and show infiltration by exhausted T cells that resist conversion to cytotoxic
status.92–94

Figure 2. Analysis of CIBERSORT immune infiltration fractions in select cancer types. The myeloid and T cell
populations in the TME were compared. Myeloid cells were defined as: Monocytes, Macrophages (M0, M1, M2),
Dendritic Cells (Resting, Activated). T Cells were defined as CD8+, CD4+ (Naïve, RestingMemory, ActivatedMemory),
FollicularHelper, and γδ. Datawas obtained fromThorssonV et. al. Immunity 2018. BRCA, Breast Invasive Carcinoma;
GBM, Glioblastoma; HNSC, Head and Neck Squamous Cell Carcinoma; LGG, Low Grade Glioma; LUAD, Lung
Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; SKCM, Skin CutaneousMelanoma; UVM, UvealMelanoma.
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Combination therapies
Tumors evade detection and eradication utilizing a wide variety of mechanisms such as down regulation of MHC,
production of immunosuppressive cytokines, and recruitment of immune suppressive cell populations. Cancers have
been shown to employ these mechanisms, and others, to inhibit translocation of activated immune response mediators
such as STING, through epigenetic changes (i.e., hypermethylation of the STING promoter), and by selecting for the
expansion of cell with specific mutations, such as those affecting IFN receptor.79–82,95–98 Due to the multiple factors
promoting GBM growth, treatment for these tumors will likely require multimodal strategies targeting multiple immune
response pathways. There is a growing literature supporting combination therapies that include STING pathway
activation (Figure 3).

Demethylation approaches for enhancing STING responses
Hypermethylation of the STING promoter that reduces STING expression has been reported in gliomas, melanoma,
Hepatitis C, and small cell lung cancer.33,79–82 Based on such observations the combination of a STING agonist with a
demethylating agent has been investigated in gliomas, melanoma, and gastric adenocarcinoma.33,79,81 As a proof-of-
principle demonstration, STING agonist-resistant glioma cells treated with 5-aza-2'-deoxycytidine and STING agonist
responded with increased expression of IRF3 and IFIT1 that are downstream markers of STING activation. Similarly
in melanoma, treatment of cells with 5-aza-2'-deoxycytidine induced phosphorylation of IRF3 and increased in CXCL10
and IFN-B following cGAMP induction.79 Similar STING-relevant results have been shown for human gastric,
pancreatic and colon cancer cell lines treated with zebularine (a demethylating agent) in combination with cGAMP
therapy, which reduced tumor burden and extended OS for animal subjects.81 Analyzing the effects of methylation
inhibitors is complicated by the number of gene expressions that are influenced by the use of such inhibitors.99

Nonetheless, available results highlight the promise of combining demethylating agents with STING agonists, which
may be especially effective in treating hyper-methylator tumors.100 Methylation analysis of the STING promoter might
prove a useful biomarker for selecting patients for STING agonist therapy.

Enhancing DNA damaging responses using STING with radiation
The effects of radiation therapy include activation of the innate and adaptive immune systems following radiation-
associated DNA damage leading to robust STING-dependent and -independent type I IFN responses.101 Loss of STING
has been associated with decreased reactive oxygen species and DNA double strands which suggest that STING agonists
may increase tumor sensitivity to ionizing radiation.55 Certain preclinical study results support this possibility. For
example, the combination of the STING agonist SB11285 with radiation in models of HNSCC resulted in significant
decrease in tumor growth.55 The combination of ADU-S100 with radiation resulted in tumor volume reduction and an
increase in TME CD8+ T cells infiltration in esophageal adenocarcinoma models.102 With respect to combinations
involving immune checkpoint inhibitors a sharp increase in PD-L1 expression was observed in association with STING

Figure 3. Major STING combinatorial approaches with additive or synergistic effects. 1) Radiation/chemother-
apy and 2) demethylation agents that enhance downstream STING activation either through increasing cytoplasmic
DNA (radiation) or decreasing STING promotermethylation (demethylating agents). Other immunotherapies (3 and
4) are synergistic therapies that focus on increasing net STING function and antitumor response through either
decreasing anti-inflammatory cytokines (STAT3 inhibition) that at baseline thwart STING response or decreasing T
cell deactivation and exhaustion (anti-PD-1/PD-L1). Created with BioRender.com.
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agonist treatment and thereby supporting the use of combined STING agonist and anti-PD-L1 therapy. In metastatic lung
models, inhaled or intratumoral administration of nanoparticles of cGAMP (NP-cGAMP), administered with fractionated
radiation therapy, showed a synergistic effect leading to robust immune response.103

A potential limitation of STING agonists when used in combination with radiation is the radiation-associated
recruitment of MDSCs that confer radiation resistance.87 MDSCs in the TME have been implicated in poor cancer
patient prognosis, metastatic disease and immunotherapy resistance.52,104 Activation of type I IFN signalingmight be one
of the mechanisms recruiting these immunosuppressive cells within the TME.52,87 To limit MDSC recruitment a CCR2
antibody could be used since CCR2 is an MDSC attractant, and CCR2 inhibition has been shown to overcome
immunosuppressive radiation effects.87

APC activation while blocking STAT3 immune suppression
Tumor cells and reactive astrocytes expressing p-STAT3 release IL-6 within the TME. The released IL-6 activates
STAT3 in immune cells, which neutralizes STING responses due to STAT-3mediated production of immunosuppressive
cytokines (i.e., IL-10 and TGF-β) that inhibit the production of pro-inflammatory cytokines and reduce antigen
presentation.53,105–108 Elevated expression of STAT3 signaling has been noted in many cancers and is correlated with
poor prognosis.109 As such, the combination of STING agonists with STAT3 inhibition may potentially lead to a
synergistic effect and further enhance anti-inflammatory responses within the TME.34,52–54,107

Several groups have examined the combination of radiotherapy, an activator of STING through increased cytDNA, and
STAT3 inhibition.110–112 In GBM preclinical models in which a STAT3 inhibitor was co-administered with radiother-
apy, animal subjects experienced increased antigen presentation and T cell activation within the TME that extended
OS.110 Increased immunological synapses, defined as dendritic-T cell interactions, were identified in the combination
treatment group.110 Studies involving other types of cancer have also shown that combined STING agonist plus STAT3
inhibitor treatment increases the anti-tumor activity of therapy.53,105 For example, in a murine breast cancer model,
administration of a small molecule STAT3 inhibitor or siRNA blockade increased type I IFN signaling following
treatment with STING agonist.53 Alterations in the TME were observed with significant increase of CD8+ T cells
combined with reduced numbers of Tregs and MDSCs.53

STING agonists in combination with immune checkpoint blockade
ICI has had little success in the treatment of GBM. Increasing tumor effector T cell infiltration and reprogramming
the immunosuppressive GBMTME could increase ICI efficacy. Combinatorial use of STING and anti PD-1/PD-L1 is an
attractive therapeutic strategy since STING agonists increase T cell infiltration and PD-L1 expression within the
TME.63,102,113,114 Additional potential synergistic effects include promoting M2 repolarization to the M1 phenotype
and increasing NK cell infiltration.37,44,115 This treatment approach has been evaluated in multiple preclinical studies
with varying degrees of success in non-GBM cancer models.35,81,102,113,114,116,117

In preclinical HNSCC models that are known to be non-immunogenic, one study showed that 80% of tumors regressed
following dual therapy with STING agonist and anti-PD-L1 antibody.113 Preclinical oral cancer models have shown
enhanced tumor rejection and abscopal anti-tumor activity following dual therapy.114 Studies combining CDN ligands
with granulocyte-macrophage colony-stimulating factor (STINGVAX) and anti-PD-1 showed tumor regression in the
CT26 model of murine colon carcinoma model and rejection of tumor engraftment following rechallenge, suggesting
long-term tumor antigen-specific memory from earlier treatment.116

Other studies have tested additional therapeutics when added onto the dual therapy backbone of STING agonist
and ICB.35,81,102,117,118 A three-agent therapy that included demethylating agent Zebularine increased animal subject
survival and reduced tumor burden in testing multiple cancer cell lines.81 STING agonists can upregulate indoleamine
2,3-dioxygenase-1 (IDO1) which promotes tumor growth, so the combination of STING agonist, IDO inhibitor, and anti-
PD-1 has been investigated.119 A robust anti-tumor effect has been reported from injecting a cocktail of ICB compounds
(anti-PD-1, anti-CTLA-4, and anti-4-1BB) with a STING agonist, showed complete and bilateral tumor reduction in 75%
of prostate cancer bearing mice.35 The only side effect noted with this therapy was ulceration at the injection site that
resolved within two to three weeks. A study showing increased PD-L1 expression post-treatment with combined
radiation and STING agonist support future investigations to evaluate three agent therapies consisting of radiation,
STING agonist, and anti-PD-1/PD-L1.102

Conclusions
STING pathway modulation is an emerging therapeutic strategy that may help overcome some of the immunotherapy
limitations for treating cancers with low effector T cell levels and/or are myeloid enriched. Despite promising anti-tumor
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responses to STING agonists when used in preclinical studies, the risk of toxic effects from STING agonist therapy in
cancer patients remains of some concern. Treatment optimization by dose de-escalations when STING agonists are used
in combination therapies are under investigation.Myelosuppression and other IO-related side effects need to be weighted
when creating therapeutic cocktails. Combination therapies with STING agonists may require regimen personalization to
achieve benefit for each treated patient.

Data availability
No data are associated with this article.
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