77 research outputs found

    Genetic engineering for improvement of Musa production in Africa

    Get PDF
    Bananas and plantains (Musa sp.) are the most important staple food and source of carbohydrates in many countries of Africa. The production is often constrained by many pests and diseases. In order to augment conventional breeding and to avoid constraints imposed by some pests and pathogens, transgenic approaches are being considered. The development of transgenic Musa plants has been achieved recently using the microprojectile bombardment procedure or Agrobacterium-mediated transformation. The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer resistance to nematode pests, fungal, bacterial and viral diseases. This article discusses the applications of genetic engineering for the enhancement of Musa production. Key words: Musa, genetic engineering, crop improvement. African Journal of Biotechnology Vol. 2 (12), pp. 503-508, December 200

    Role of biotechnology in medicinal plants

    Get PDF
    Medicinal plants are the most important source of life saving drugs for the majority of the world's population. The biotechnological tools are important to select, multiply and conserve the critical genotypes of medicinal plants. In-vitro regeneration holds tremendous potential for the production of high-quality plant-based medicine. Cryopreservation is long-term conservation method in liquid nitrogen and provides an opportunity for conservation of endangered medicinal plants. In-vitro production of secondary metabolites in plant cell suspension cultures has been reported from various medicinal plants. Bioreactors are the key step towards commercial production of secondary metabolites by plant biotechnology. Genetic transformation may be a powerful tool for enhancing the productivity of novel secondary metabolites; especially by Agrobacterium rhizogenes induced hairy roots. This article discusses the applications of biotechnology for regeneration and genetic transformation for enhancement of secondary metabolite production in-vitro from medicinal plants. Key words: Bioreactors; genetic transformation; regeneration; secondary metabolites Abbreviations: BA: 6-Benzylaminopurine; TDZ: 1-Phenyl-3-(1,2,3-thiadiazol-5-yl) urea; NAA: a-Naphthaleneacetic acid; IAA: Indole-3 acetic acid; 2iP: 6-(g-Dimethylallylamino) purine; 2,4-D: 2,4-Dichlorophenoxyacetic acid; GA3: Gibberellic acid Trop J Pharm Res, December 2003; 2(2): 243-25

    Strategies for resistance to bacterial wilt disease of bananas through genetic engineering

    Get PDF
    The livelihoods of millions of Ugandan farmers have been threatened by current outbreak of a banana bacterial wilt disease caused by Xanthomonas campestris pv. musacearum, which is very destructive and rapidly spreading in Uganda. Bananas are the highest value staple food and source of income for millions of people in this region. Economic impact of the disease is clear as a result of widespread destruction of banana, pre-harvest rotting of fruits, and a lack of farmers' ability to grow bananas in disease endemic areas. The disease attacks all varieties of banana, including East African Highland Bananas (EAHBs). No banana germplasm with bacterial wilt resistance has been identified. The transgenic approach shows potential for the genetic improvement of the crop using a wide set of transgenes currently available which may confer bacterial resistance. This article discusses the potential strategies to develop transgenic banana plants resistant to bacterial wilt disease. Key Words: Banana, bacterial wilt, genetic transformation, disease resistant. African Journal of Biotechnology Vol.3(12) 2004: 688-69

    Agrobacterium-induced hypersensitive necrotic reaction in plant cells: a resistance response against Agrobacterium-mediated DNA transfer

    Get PDF
    High necrosis and poor survival rate of target plant tissues are some of the major factors that affect the efficiency of Agrobacterium-mediated T-DNA transfer into plant cells. These factors may be the result of, or linked to, hypersensitive defense reaction in plants to Agrobacterium infection, which may involve the recognition of specific signals from the Agrobacterium that triggers the burst of reactive oxygen species at the infection site. Evidences of Agrobacterium-induced necrosis in target plant tissues and its link to reactive oxygen species are presented. Application of antioxidants, addition of acetosyringone and optimization of pre-culture conditions suppress the Agrobacterium-induced hypersensitive necrotic response in target plant tissues, thereby enhancing stable transformation.Key words: Agrobacterium; hypersensitive reaction; necrosis; signal transduction; oxidative burst; transformation.African Journal of Biotechnology Vol. 4 (8), pp. 752-75

    Transgenic expression of Arabidopsis ELONGATION FACTOR-TU RECEPTOR (AtEFR) gene in banana enhances resistance against Xanthomonas campestris pv. musacearum

    Full text link
    Banana Xanthomonas wilt (BXW) caused by Xanthomonas campestris pv. musacearum (Xcm) is a severe bacterial disease affecting banana production in East and Central Africa, where banana is cultivated as a staple crop. Classical breeding of banana is challenging because the crop is clonally propagated and has limited genetic diversity. Thus, genetic engineering serves as a viable alternative for banana improvement. Studies have shown that transfer of the elongation factor Tu receptor gene (AtEFR) from Arabidopsis thaliana to other plant species can enhance resistance against bacterial diseases. However, AtEFR activity in banana and its efficacy against Xcm has not been demonstrated. In this study, transgenic events of banana (Musa acuminata) cultivar dwarf Cavendish expressing the AtEFR gene were generated and evaluated for resistance against Xcm under greenhouse conditions. The transgenic banana events were responsive to the EF-Tu-derived elf18 peptide and exhibited enhanced resistance to BXW disease compared to non-transgenic control plants. This study suggests that the functionality of AtEFR is retained in banana with the potential of enhancing resistance to BXW under field conditions

    Agrobacterium tumefaciens-mediated transformation of Pseudocercospora fijiensis to determine the role of PfHog1 in osmotic stress regulation and virulence modulation

    Get PDF
    Open Access Journal; Published online: 16 May 2017Black Sigatoka disease, caused by Pseudocercospora fijiensis is a serious constraint to banana production worldwide. The disease continues to spread in new ecological niches and there is an urgent need to develop strategies for its control. The high osmolarity glycerol (HOG) pathway in Saccharomyces cerevisiae is well known to respond to changes in external osmolarity. HOG pathway activation leads to phosphorylation, activation and nuclear transduction of the HOG1 mitogen-activated protein kinases (MAPKs). The activated HOG1 triggers several responses to osmotic stress, including up or down regulation of different genes, regulation of protein translation, adjustments to cell cycle progression and synthesis of osmolyte glycerol. This study investigated the role of the MAPK-encoding PfHog1 gene on osmotic stress adaptation and virulence of P. fijiensis. RNA interference-mediated gene silencing of PfHog1 significantly suppressed growth of P. fijiensis on potato dextrose agar media supplemented with 1 M NaCl, indicating that PfHog1 regulates osmotic stress. In addition, virulence of the PfHog1-silenced mutants of P. fijiensis on banana was significantly reduced, as observed from the low rates of necrosis and disease development on the infected leaves. Staining with lacto phenol cotton blue further confirmed the impaired mycelial growth of the PfHog1 in the infected leaf tissues, which was further confirmed with quantification of the fungal biomass using absolute- quantitative PCR. Collectively, these findings demonstrate that PfHog1 plays a critical role in osmotic stress regulation and virulence of P. fijiensis on its host banana. Thus, PfHog1 could be an interesting target for the control of black Sigatoka disease in banana

    Expressed centromere specific histone 3 (CENH3) variants in cultivated triploid and wild diploid bananas (Musa spp.)

    Get PDF
    Open Access JournalCentromeres are specified by a centromere specific histone 3 (CENH3) protein, which exists in a complex environment, interacting with conserved proteins and rapidly evolving satellite DNA sequences. The interactions may become more challenging if multiple CENH3 versions are introduced into the zygote as this can affect post-zygotic mitosis and ultimately sexual reproduction. Here, we characterize CENH3 variant transcripts expressed in cultivated triploid and wild diploid progenitor bananas. We describe both splice- and allelic-[Single Nucleotide Polymorphisms (SNP)] variants and their effects on the predicted secondary structures of protein. Expressed CENH3 transcripts from six banana genotypes were characterized and clustered into three groups (MusaCENH-1A, MusaCENH-1B, and MusaCENH-2) based on similarity. The CENH3 groups differed with SNPs as well as presence of indels resulting from retained and/or skipped exons. The CENH3 transcripts from different banana genotypes were spliced in either 7/6, 5/4 or 6/5 exons/introns. The 7/6 and the 5/4 exon/intron structures were found in both diploids and triploids, however, 7/6 was most predominant. The 6/5 exon/introns structure was a result of failure of the 7/6 to splice correctly. The various transcripts obtained were predicted to encode highly variable N-terminal tails and a relatively conserved C-terminal histone fold domain (HFD). The SNPs were predicted in some cases to affect the secondary structure of protein by lengthening or shorting the affected domains. Sequencing of banana CENH3 transcripts predicts SNP variations that affect amino acid sequences and alternatively spliced transcripts. Most of these changes affect the N-terminal tail of CENH3

    Genome sequencing data for wild and cultivated bananas, plantains and abacá

    Get PDF
    We performed shotgun genome sequencing on a total of 19 different Musa genotypes including representatives of wild banana species Musa acuminata and M. balibisiana, allopolyploid bananas and plantains, Fe'i banana, pink banana (also known as hairy banana) and abacá (also known as hemp banana). We aligned sequence reads against a previously sequenced reference genome and assessed ploidy and, in the case of allopolyploids, the contributions of the A and B genomes; this provides important quality-assurance data about the taxonomic identities of the sequenced plant material. These data will be useful for phylogenetics, crop improvement, studies of the complex story of intergenomic recombination in AAB and ABB allotriploid bananas and plantains and can be integrated into resources such as the Banana Genome Hub

    Silencing of the mitogen-activated protein kinases (MAPK) fus3 and slt2 in pseudocercospora fijiensis reduces growth and virulence on host plants

    Get PDF
    Open Access JournalPseudocercospora fijiensis, causal agent of the black Sigatoka disease (BSD) of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB). This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG) could be an alternative strategy for developing transgenic banana and plantain resistant to BSD
    • …
    corecore