106 research outputs found

    Cell cycle-dependent regulation of the bi-directional overlapping promoter of human BRCA2/ZAR2 genes in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>BRCA2 gene expression is tightly regulated during the cell cycle in human breast cells. The expression of BRCA2 gene is silenced at the G0/G1 phase of cell growth and is de-silenced at the S/G2 phase. While studying the activity of BRCA2 gene promoter in breast cancer cells, we discovered that this promoter has bi-directional activity and the product of the reverse activity (a ZAR1-like protein, we named ZAR2) silences the forward promoter at the G0/G1 phase of the cell. Standard techniques like cell synchronization by serum starvation, flow cytometry, N-terminal or C-terminal FLAG epitope-tagged protein expression, immunofluorescence confocal microscopy, dual luciferase assay for promoter evaluation, and chromatin immunoprecipitation assay were employed during this study.</p> <p>Results</p> <p>Human <it>BRCA2 </it>gene promoter is active in both the forward and the reverse orientations. This promoter is 8-20 fold more active in the reverse orientation than in the forward orientation when the cells are in the non-dividing stage (G0/G1). When the cells are in the dividing state (S/G<sub>2</sub>), the forward activity of the promoter is 5-8 folds higher than the reverse activity. The reverse activity transcribes the ZAR2 mRNA with 966 nt coding sequence which codes for a 321 amino acid protein. ZAR2 has two C4 type zinc fingers at the carboxyl terminus. In the G0/G1 growth phase ZAR2 is predominantly located inside the nucleus of the breast cells, binds to the BRCA2 promoter and inhibits the expression of BRCA2. In the dividing cells, ZAR2 is trapped in the cytoplasm.</p> <p>Conclusions</p> <p><it>BRCA2 </it>gene promoter has bi-directional activity, expressing BRCA2 and a novel C4-type zinc finger containing transcription factor ZAR2. Subcellular location of ZAR2 and its expression from the reverse promoter of the BRCA2 gene are stringently regulated in a cell cycle dependent manner. ZAR2 binds to BRCA2/ZAR2 bi-directional promoter <it>in vivo </it>and is responsible, at least in part, for the silencing of BRCA2 gene expression in the G0/G1 phase in human breast cells.</p

    Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting

    Get PDF
    The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with -15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases.Peer reviewe

    Links between gut microbiome composition and fatty liver disease in a large population sample

    Get PDF
    Fatty liver disease is the most common liver disease in the world. Its connection with the gut microbiome has been known for at least 80 y, but this association remains mostly unstudied in the general population because of underdiagnosis and small sample sizes. To address this knowledge gap, we studied the link between the Fatty Liver Index (FLI), a well-established proxy for fatty liver disease, and gut microbiome composition in a representative, ethnically homogeneous population sample of 6,269 Finnish participants. We based our models on biometric covariates and gut microbiome compositions from shallow metagenome sequencing. Our classification models could discriminate between individuals with a high FLI (>= 60, indicates likely liver steatosis) and low FLI (Clostridia, mostly belonging to orders Lachnospirales and Oscillospirales. Our models were also predictive of the high FLI group in a different Finnish cohort, consisting of 258 participants, with an average AUC of 0.77 and AUPRC of 0.51 (baseline at 0.21). Pathway analysis of representative genomes of the positively FLI-associated taxa in (NCBI) Clostridium subclusters IV and XIVa indicated the presence of, e.g., ethanol fermentation pathways. These results support several findings from smaller case-control studies, such as the role of endogenous ethanol producers in the development of the fatty liver

    Early prediction of incident liver disease using conventional risk factors and gut-microbiome-augmented gradient boosting

    Get PDF
    The gut microbiome has shown promise as a predictive biomarker for various diseases. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with -15 years of follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predictors individually and in conjunction with conventional risk factors for incident liver disease. Separately, conventional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of conventional risk factors using machine learning significantly improved the performance. Similarly, disease free survival analysis showed significantly improved stratification using microbiome-augmented models. Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well as those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases

    A Communal Catalogue Reveals Earth\u27s Multiscale Microbial Diversity

    Get PDF
    Our growing awareness of the microbial world\u27s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth\u27s microbial diversity
    • …
    corecore