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SUMMARY
The gutmicrobiome has shown promise as a predictive biomarker for various diseases. However, the potential
of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilized
shallow shotgun metagenomic sequencing of a large population-based cohort (N > 7,000) with �15 years of
follow-up in combination with machine learning to investigate the predictive capacity of gut microbial predic-
tors individually and in conjunctionwith conventional risk factors for incident liver disease. Separately, conven-
tional and microbial factors showed comparable predictive capacity. However, microbiome augmentation of
conventional risk factors using machine learning significantly improved the performance. Similarly, disease-
free survival analysis showed significantly improved stratification using microbiome-augmented models.
Investigation of predictive microbial signatures revealed previously unknown taxa for liver disease, as well
as those previously associatedwith hepatic function and disease. This study supports the potential clinical val-
idity of gut metagenomic sequencing to complement conventional risk factors for prediction of liver diseases.
INTRODUCTION

Liver disease (LD) causes �2 million deaths per year worldwide–

approximately 3.5% of all deaths–and is increasingly common in
Cell Metabolism 34, 719–73
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aging populations (World Health Organization, 2019; Asrani

et al., 2019). The etiology of LD is complex and includes several

inter-related risk factors, such as obesity, age, and excess alcohol

consumption (Younossi et al., 2018). Alcohol consumption, in
0, May 3, 2022 ª 2022 The Authors. Published by Elsevier Inc. 719
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Table 1. Baseline characteristics of study population

Female Male

n = 7,115 n = 55% n = 45%

Demographics

Age 49.69 [38.05,

58.78]

51.92 [40.54,

60.70]

Physical parameters

Body mass

index (kg/m2)

25.90 [23.09,

29.47]

26.9 [24.55,

29.58]

Waist-hip ratio 0.84 [0.80,

0.88]

0.97 [0.92,

1.01]

Lifestyles

Smoking 19% 28%

Pure alcohol

consumption (g/week)

18.9 [2.7,

55.8]

75.9 [20.7,

168.3]

Laboratory results

HDL cholesterol (mmol/L) 1.59 [1.35, 1.89] 1.30 [1.10, 1.53]

LDL cholesterol (mmol/L) 3.19 [2.65, 3.76] 3.46 [2.89, 4.09]

Triglycerides (mmol/L) 1.07 [0.80, 1.45] 1.36 [0.97, 1.97]

Gamma-glutamyl

transferase (U/L)

19 [15, 27] 30 [21, 46]

Alanine

aminotransferase (U/L)

18 [14, 24] 27 [20, 37]

Aspartate

aminotransferase (U/L)a
23.5 [20, 28] 28.0 [24, 33]

Median [IQR] for continuous variables; n% for categorical variables.
aAvailable for 6,211 persons.
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particular, is a major contributor to LD, accounting for >50% of

cirrhosis deaths (Asrani et al., 2019). Consequences of LD can

be acute or chronic with highly variable progression rates; howev-

er, most patients are not diagnosed until an advanced stage when

liver function is overwhelmed (e.g., decompensated cirrhosis)

(Younossi et al., 2016; Bellentani, 2017). Currently, liver biopsy re-

mains the gold standard for diagnosis and classification of dis-

ease stage, but biopsy is invasive and thus restricted. Although

non-invasive tests (NITs) for detecting LDare available, such as ul-

trasound, elastography, computed tomography, magnetic reso-

nance imaging, and spectroscopy, they are primarily applicable

to the detection of advanced severity (Soresi et al., 2014; Cleve-

land et al., 2018; Moreno et al., 2019). Hence, there is an unmet

need for high-fidelity early detection and risk prediction ap-

proaches for LD.

The role of the human gut microbiome—the collection of mi-

croorganisms residing in the gastrointestinal tract—has been

increasingly recognized in various aspects of LD (Hartmann

et al., 2019; Tripathi et al., 2018). Interest in the gut microbiome

has rapidly grown as sequencing technologies have progressed

from 16S rRNA amplicon sequencing to shotgunmetagenomics.

Recent studies have revealed evidence linking gut microbial

composition and the pathogenesis of LD (Adolph et al., 2018; Sa-

fari and Gérard, 2019; Zhu et al., 2015), as well as potential ther-

apeutic approaches targeting gut microbial communities

(Szabo, 2015; Woodhouse et al., 2018). Importantly, the gut mi-

crobiome has shown potential for differentiating cirrhosis and
720 Cell Metabolism 34, 719–730, May 3, 2022
non-cirrhosis controls. Qin et al. have shown that gene- and

function-level biomarkers derived from metagenomics could

discriminate between liver cirrhosis patients and healthy controls

(Qin et al., 2014). Loomba et al. have successfully distinguished

advanced fibrosis from mild and moderate nonalcoholic fatty

liver disease (NAFLD) using the gut microbiome characterized

by whole-genome shotgun sequencing with random forest clas-

sifiers (Loomba et al., 2017). Later, Caussy et al. have used

random forest classifiers to distinguish NAFLD cirrhosis from

non-NAFLD healthy controls based on gut microbial composi-

tions from 16S sequencing (Caussy et al., 2019). However, pre-

vious studies have been limited by cross-sectional study design,

and there are limited data regarding the association between

baseline microbiota and incident LD. This would be an important

step in investigating whether the gut microbiome is causally

linked to LD or can be used as a stratification tool to identify

those at high risk who may benefit from targeted interventions.

Therefore, we designed a prospective study to examine the

association and predictive capacity of the gut microbiome for

incident LDs, using shallow metagenomic sequencing and su-

pervised machine learning in a large population-based cohort

of >7,000 individuals with median �15 years of electronic health

record (EHR) follow-up. Traditional statistical and machine

learning approaches are compared on gut metagenomes, and

their predictive capacity is evaluated individually and in combi-

nation with conventional risk factors, including age, sex, body

mass index (BMI), waist-hip ratio (WHR), alcohol consumption,

smoking status, triglycerides, high-density lipoprotein (HDL)

cholesterol, low-density lipoprotein (LDL) cholesterol, and

gamma-glutamyl transferase (GGT) levels. The best-performing

models are further assessed using survival analysis for time to

disease onset. Taken together, our study assesses the potential

clinical validity of adding the gut metagenome to conventional

risk factors for the prediction of incident LD. We make our pre-

dictive models freely available.

RESULTS

Characteristics of study population
This study included 7,115 participants from the population-

based FINRISK 2002 cohort, whose participants are representa-

tive of Finnish population aged 25–74 years at baseline, with a

median follow-up of 14.8 years (STAR Methods) (Borodulin

et al., 2018). The detailed baseline characteristics of the study

population are provided in Table 1. To investigate the predictive

capacity of the baseline gut microbiome and conventional risk

factors for incident LDs, we matched phenotype metadata with

gut microbial profiles derived from stool samples and linked

the baseline data to follow-up diagnoses of any LDs or alcoholic

LD (ALD) defined by ICD-10 codes (STAR Methods). After strin-

gent quality control and filtering (STAR Methods), 41 cases of

incident ALD and 103 cases of incident LD were considered for

prediction analyses. The median time from baseline to onset

for ALD and LD was 9.45 (IQR 5.21–11.95) and 9.14 (IQR 5.10–

11.98) years, respectively.

Baseline gut microbial composition
Stool samples were sequenced by shallow shotgun metage-

nomics to a mean depth of approximately 1.056 million reads
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Figure 1. Machine learning framework for predicting incident liver disease
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per sample. After human sequences, low-quality and adapter

reads were removed, and a total of 7.63 billion reads were clas-

sified using a Genome Taxonomy Database (GTDB) release 89

index database for taxonomic classification, resulting in

967,000 post-QC and classified reads per sample on average.

In total, GTDB classification uniquely identified 151 phyla, 338

classes, 925 orders, 2,254 families, 7,906 genera, and 24,705

species from gut metagenomes. We focused on common bacte-

rial taxa to reduce alignment artifacts and noise; taxa were

filtered by relative abundance (>0.01% in at least 1% of sam-

ples), which resulted in 46 phyla, 71 classes, 124 orders, 232

families, 617 genera, and 1,224 species for further analysis.

Overall, the most abundant taxa were members of phyla Firmi-

cutes, Firmicutes_A (corresponding to Firmicutes in NCBI), Fir-

micutes_C (Firmicutes), Bacteroidota (Bacteroidetes), Actino-

bacteriota (Actinobacteria), and Proteobacteria (Figure S1).

Developing machine learning models
The workflow for machine learning to predict incident LD is

shown in Figure 1. For both ALD and LD, samples were randomly

partitioned based on the prediction target into a training set for

discovery (70% of samples) and a validation set for evaluation

(remaining 30%), and the partitioning itself was randomly per-

formed 103 to assess sampling variation. Within the training

set, we developed and tested prediction models through

cross-validation, and the optimal models were assessed for final

performance in the withheld validation set (STAR Methods). Pre-

diction models were derived from different taxonomic levels

separately because taxa at higher ranks are inclusive of their

members at lower ranks, and introducing redundant features

can lead to impaired prediction performance. The average re-

sults of the 10 sample partitions are reported.

To define a subset of informative taxa, we performed pre-se-

lection of microbial features associated with incident LD from

the union of three approaches in the training sets (STAR

Methods). After pre-selection, there were 10, 16, 42, 123, 355,

and 508 microbial taxa on average at phylum, class, order, fam-

ily, genus, and species levels for incident ALD and 9, 12, 25, 62,

194, and 303 for incident LD. To incorporate microbial diversity

measures, Chao1, Pielou, and Shannon indices were included

as additional features. These microbial features were then
used to build prediction models in the corresponding

training sets.

Gradient boosting classifiers were applied to pre-selected mi-

crobial features to develop and optimize prediction models with

cross-validation in the training datasets. To assess prediction

performance, we also included two robust and common statisti-

cal approaches: logistic regression and ridge regression.

Prediction of incident LD
The gradient boosting classifier generally outperformed both

multivariable logistic regression and ridge regression, particu-

larly at lower taxonomic levels (Figure 2). The performance

across models was measured and compared using the area un-

der the receiver operating characteristic curve (AUROC), which

considers the trade-offs between sensitivity and specificity at

all possible thresholds (STARMethods).With the gradient boost-

ing classifier, higher prediction performance was observed at

lower taxonomic levels for both incident ALD and LD, suggesting

that the strength of association for higher resolution of gut micro-

bial features outweighs their lower abundances at these levels.

For LD, we obtained the highest prediction performance at the

species level with an average AUROC of 0.733 (IQR 0.709–

0.748 across test sets from 10 random splits; Figure 2A). The

mean AUROC for LD ranged from 0.622 to 0.725 at phylum

and genus levels, respectively. When predicting ALD, we ob-

tained an average AUROC > 0.75 at phylum and class levels

and an average AUROC > 0.85 for other taxonomic levels with

the highest value of 0.895 (0.886–0.907) at the species level (Fig-

ure 2B). For both LD and ALD, the AUROC values of gradient

boosting at the species level were significantly higher than those

of logistic and ridge regression models (Wilcoxon p < 0.01;

Figure S2).

Ridge regression tended to perform better than logistic regres-

sion (Figure 2). For LD, ridge regression achieved an average

AUROC >0.65 at order, family, genus, and species levels, with

the highest average AUROC of 0.675 (0.639–0.707) at the spe-

cies level; for ALD, an AUROC >0.80 was obtained at family,

genus, and species levels, with the highest average AUROC of

0.838 (0.809–0.865) at the species level. Logistic regression

yielded its highest average AUROC of 0.651 (0.618–0.673) at

the family level and an AUROC <0.60 at other taxonomic levels
Cell Metabolism 34, 719–730, May 3, 2022 721
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for predicting LD (Figure 2A); for ALD, the best performance was

obtained at the order level with an average AUROC of 0.694

(0.636–0.735; Figure 2B). Although logistic regression is highly

efficient and interpretable, it did not perform well in this case

where a large number of features are correlated. The L2 regula-

rization of ridge regression better handled inter-correlated mi-

crobial features than that of logistic regression. However, both

methods underperformed compared with the gradient-boosted

decision tree classifier, which is known to better capture

nonlinear relationships and is robust to correlated features. The

gradient-boosted decision tree classifier was used in subse-

quent analyses.
Benchmarking reference models using conventional
approaches
Conventional risk factors are commonly used for predicting LD

risk (Bedogni et al., 2006; Long et al., 2018). We built reference

models using a comprehensive set of conventional risk factors,

including sex, age, alcohol consumption, smoking status, BMI,

WHR, triglycerides, HDL, LDL, and GGT, to compare with the

prediction capacity of microbiome-based models (STAR

Methods). The conventional risk factor model achieved an

average AUROC of 0.768 (0.751–0.779) for incident LD, slightly

higher than the highest average AUROC of microbiome-only

models achieved at the species level (AUROC 0.733,

Figures 2A and S2 [Wilcoxon p < 0.05]). For ALD, the average

AUROC of conventional risk factor models reached 0.875

(0.867–0.893), which was lower than the AUROC of the gradient

boosting model achieved using species-level microbial features

alone (average AUROC 0.895, Figures 2B and S2 [Wilcoxon

p < 0.05]). Both conventional models and microbiome-based

models had substantial predictive power individually; the next
722 Cell Metabolism 34, 719–730, May 3, 2022
section evaluates the combination of conventional risk factors

and microbial compositions for LD and ALD prediction.
Integrating gut microbiome and conventional risk
factors
To investigate the potential of a microbiome-augmented predic-

tion model for LD, we utilized the gradient boosting classifier of

microbiome features together with all conventional risk factors

related to the disease and followed the same partitioning for

training and testing (STAR Methods). To evaluate the perfor-

mance comprehensively, the optimal models were assessed

for both AUROC and area under the precision-recall curve

(AUPRC, which considers the trade-offs between precision

and recall; STAR Methods). Since greater taxonomic resolution

offered better predictive performance, we compared the spe-

cies-level augmented and the conventional-risk-factors-only

models.

Overall, the prediction performance of the microbiome-

augmented models achieved greater AUROC and AUPRC

compared with that of the conventional prediction models (Wil-

coxon p < 0.05). Prediction of LD (Figure 3A) using the spe-

cies-level augmented model yielded an average AUROC of

0.834 (0.815–0.852), an AUROC increase of 0.066 over the con-

ventional risk factor model (as above, average AUROC 0.768).

For ALD, the species-level augmentedmodel yielded an average

AUROC of 0.956 (0.945–0.964), an AUROC increase of 0.081

over the conventional risk factor model (as above, average

AUROC 0.875) (Figure 3B).

With a baseline AUPRC value of 0.015 for LD, the species-level

augmented model achieved an average AUPRC of 0.185 (0.156–

0.202), which was higher (Wilcoxon p < 0.05) than the average

AUPRC of 0.158 (0.141–0.179) yielded by the conventional risk
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factor model (Figure 3C). For ALD with a baseline AUPRC of

0.006, the species-level augmentedmodel yielded a significantly

greater AUPRC than the conventional risk factor model (Wil-

coxon p < 0.01; Figure 3D), with average AUPRCs of 0.304

(0.283–0.326) and 0.199 (0.133–0.265), respectively.

Comparison of gut-microbiome-based models and
clinical tests for predicting LD
To further evaluate the utility of the gut microbiome for predicting

LDs, we assessed the predictive capacity and generalizability of

three clinical NITs that aimed to screen liver-related events—

fatty liver index (FLI), BARD score, and the dynamic aspartate-

to-alanine aminotransferase ratio (dAAR) score—and compared

them with gut-microbiome-based predictions. FLI is an algo-

rithm developed for predicting fatty liver (Bedogni et al., 2006)

and has been extensively validated in various populations,

including a general population not selected for specific LDs

(Koehler et al., 2013; Yang et al., 2015; Caballerı́a et al., 2018).

FLI is straightforward to use, as it is based on routine measure-

ments of BMI, waist circumference, triglycerides, andGGT (Bed-

ogni et al., 2006). The BARD score combines BMI, aspartate

transaminase/alanine aminotransferase (AST/ALT) ratio, and

the presence of diabetesmellitus andwas developed for predict-

ing advanced liver fibrosis in clinical practice (Harrison et al.,

2008). In previous studies, the BARD score has beenmostly vali-

dated in patients with NAFLD and tended to have limited predic-

tive ability (Younes et al., 2021). The dAAR score is based on age,

ALT, and AST andwas developed for predicting liver-related out-

comes and advanced liver fibrosis/cirrhosis in general popula-

tions. The dAAR has shown performance comparable with or
better than other NITs in various populations (Åberg et al.,

2021). Although other non-invasive markers for detecting liver-

related events, such as FIB4 index and NAFLD fibrosis score,

exist, we could not assess these markers as they were not

measured at the population level.

We utilized Cox models to investigate the predictive capacity

and generalizability of FLI, BARD, and dAAR for incident LDs

and compared them with species-level gut-microbiome-based

models in the validation sets (STAR Methods). We found that

the gut-microbiome-based model and dAAR score performed

better than FLI and BARD score in distinguishing incident LD

cases from non-cases. For LD, the gut-microbiome-based

model achieved a higher predictive capacity than FLI and

BARD (both Wilcoxon p < 0.01) and similar performance as

dAAR (Wilcoxon p = 0.5). Specifically, the gut-microbiome-

based model and dAAR score identified incident cases with

average C-statistics of 0.741 (0.724–0.756) and 0.744 (0.721–

0.762), respectively, followed by FLI (0.677; 0.636–0.71) and

BARD score (0.539; 0.527–0.557). For ALD, the gut-micro-

biome-based model outperformed (Wilcoxon p < 0.01) each of

the dAAR, FLI, and BARD scores, with C-statistics of 0.909

(0.902–0.922), 0.817 (0.781–0.847), 0.725 (0.699–0.751), and

0.561 (0.528–0.581), respectively. For comparison, the conven-

tional risk factor model yielded average C-statistics of 0.771

(0.739–0.803) and 0.894 (0.869–0.922) for LD and ALD,

respectively.

A combined model of the gut microbiome and dAAR yielded

average C-statistics of 0.786 (0.758–0.801) and 0.883 (0.845–

0.908) for LD and ALD, respectively. Our results suggest that

the gut microbiome and dAAR have comparable predictive
Cell Metabolism 34, 719–730, May 3, 2022 723



+
++

+
++++++ +

+
+++

++
+++++++ +++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+++++

++ +
+

+++

+ +
+++

++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

85

90

95

100

0 5 10 15
Years

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

(%
)

++ + + ++
+

+
+
+

+ +
+++

+ ++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++ ++
+

+ +
+
+

++++++++
+++

+ +++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

85

90

95

100

0 5 10 15
Years

Su
rv

iv
al

 p
ro

ba
bi

lit
y 

(%
)

LD ALDA B

+ Risk Group 1 + Risk Group 2
+ Risk Group 1 + Risk Group 2

Conventional
Species-augmented

Figure 4. Survival curves of predicted risk

groups for incident liver disease

(A and B) Performance in the withheld validation set

(30%of samples) of Coxmodels of conventional risk

factors and in combination with species-level mi-

crobiome-only scores for (A) any liver disease (# of

cases = 30) and (B) alcoholic liver disease (# of ca-

ses = 12). Predicted risk groups are the top 5% (risk

group 1) versus the bottom 95% (risk group 2).
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performance for LD and that the gutmicrobiome outperforms the

existing NITs for ALD. Importantly, the combination of dAAR and

the gut microbiome maximized C-indices for LD, indicating that

the two predictors are complementary.

Survival analysis using conventional and microbiome-
augmented risk models
We next performed survival analysis using time-on-study Cox

regression in the validation sets to assess potential clinical valid-

ity of microbiome-augmented (species-level) risk models as

compared with conventional-risk-factors-only models (STAR

Methods). The Cox model of conventional risk factors achieved

average C-statistics of 0.813 (0.795–0.826) for LD and 0.922

(0.904–0.940) for ALD, respectively. The microbiome-

augmented risk models yielded higher (Wilcoxon p < 0.01)

average C-statistics of 0.838 (0.819–0.840) for LD and 0.959

(0.954–0.964) for ALD. Consistent with this finding, the micro-

biome-augmented model fits significantly better (LRT p < 0.01)

than that using conventional risk factors only. Disease-free sur-

vival of those in the highest 5% of microbiome-augmented risk

was worse than those for conventional risk factors alone (Fig-

ure 4). Among the highest 5% risk predicted for LD, the micro-

biome-augmentedmodel identified 12 out of 30 cases in the vali-

dation set, whereas the conventional risk factor model identified

9 cases. For ALD, the microbiome-augmented and conventional

models identified 9 and 7 cases, respectively, out of 12 cases in

the validation set.

Application to NAFLD case-control classification
To investigate the generalizability of our findings to NAFLD clas-

sification, we applied the prediction models in an independent

cohort including 30 NAFLD patients and 97 non-NAFLD controls

recruited at the University of California San Diego (UCSD)

(Caussy et al., 2019; Oh et al., 2020). The detailed characteristics

of the UCSD cohort are given in STAR Methods and Table S1.

Here, we tested whether the species-level gut-microbiome-

augmented models for any LDs could discriminate NAFLD pa-

tients from controls. In the external case-control study, the

gut-microbiome-augmented models for LD achieved an average

AUROC of 0.705 (IQR 0.697–0.717 in UCSD cohort) and AUPRC

of 0.431 (0.422–0.456). Although the predictive models were not

trained for NAFLD specifically, the results suggested moderate

generalizability of gut-microbiome-augmented models that

were trained from a broader spectrum of LDs. For comparison,
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we also tested the prediction performance

of conventional risk factor models and mi-

crobiome-only models trained on the

FINRISK cohort. The microbiome-only
models for LD achieved an average AUROC of 0.61 (0.57–

0.651) and AUPRC of 0.315 (0.277–0.355), whereas the conven-

tional risk factormodels had an average AUROC of 0.497 (0.454–

0.549) and AUPRC of 0.256 (0.237–0.273), indicating that the

gut-microbiome-augmented model was the most generalizable.

Furthermore, we examined the ability of conventional risk fac-

tors to distinguish NAFLD cases from controls and whether gut

microbiome could improve the discrimination ability. Using logis-

tic regression models of individual risk factors, we found that

BMI, WHR, TRIG, and HDL each achieved AUROC scores

greater than 0.750 (Figures S3A–S3I). The combination of all

conventional risk factors achieved an AUROC of 0.890 (Fig-

ure S3J). We next utilized ridge logistic regression to evaluate

the discrimination ability of species-level gut microbiome.

Notably, species-level gut microbiome alone identified NAFLD

caseswith an AUC score of 0.832 (Figure S3K), which was higher

than any individual conventional risk factor. Subsequently, we

combined the gut-microbiome-based model and conventional

risk factors using logistic regression, which improved the

discrimination performance to an AUROC of 0.936 (Figure S3L).

Composition of gut microbiome signatures
To better understand which bacterial taxa contribute to ALD and

LD prediction, we considered those that most frequently contrib-

uted to the optimal gradient boosting classifiers at each taxo-

nomic level (Table S2).

Notably, Pielou evenness and Chao1 and Shannon diversity,

which were found to be negatively associated with both ALD

and LD, were all selected as predictive contributors at phylum,

class, order, and family levels. This was consistent with previous

findings that the richness and diversity of gut microbiome com-

munities are positively correlated with human health (Acharya

and Bajaj, 2017; B€ackhed et al., 2012).

The microbial signatures mainly comprised taxa from phylum

Actinobacteriota (Actinobacteria in NCBI taxonomy), Bacteroi-

dota (Bacteroidetes), Firmicutes and Firmicutes_A (Firmicutes),

and Proteobacteria (Proteobacteria) (Figures 5, S4, and S5).

Overall, most of the selected microbial taxa were significantly

(FDR < 0.05) and positively associated with LD. Many bacterial

taxa have been previously reported to be related to LD and its

progression. The families Chitinophagaceae (mainly contributed

by Chitinophaga) (Puri et al., 2018), Streptococcaceae (mainly

Streptococcus spp.) (Puri et al., 2018; Dubinkina et al., 2017;

Sarin et al., 2019), and Enterobacteriaceae (mainly Klebsiella



Figure 5. Predictive microbial taxa for liver disease

A bacterial taxonomy tree (phylum to family level) whose members at lower ranks showed predictive signal for incident liver disease. For full taxonomy, see

Figure S4.
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and Klebsiella_A) (Dubinkina et al., 2017); and genera Actino-

myces (mainly A. graevenitzii) (Fan et al., 2018; Hwang et al.,

2011), Rikenella (Xue et al., 2017), Blautia (Dubinkina et al.,

2017; Leclercq et al., 2014), Dorea (Leclercq et al., 2014; Waters

and Ley, 2019), Neisseria (Fan et al., 2018; Chen et al., 2016),

etc., have been frequently reported to be enriched in patients

with alcoholism and ALD; the families Streptococcaceae (mainly

Streptococcus spp.), Erysipelotrichaceae, and Enterobacteri-

aceae (mainly Escherichia); and genera Actinomyces (Caussy

et al., 2019), Lactobacillus_C and Lactobacillus_H as former

Lactobacillus (Nobili et al., 2018; Shao et al., 2018; Jiang et al.,

2015), Veillonella (Shao et al., 2018; Chen et al., 2016), Prevotella

spp. (Chen et al., 2016; Jiang et al., 2015; Zhu et al., 2015; Shen

et al., 2017; Boursier et al., 2016), etc., have been found to be
positively associated with a broad range of LDs, including

acute-on-chronic liver failure, non-alcoholic fatty LD, and

cirrhosis. Several members of Actinomyces spp. (Ávila et al.,

2015; Könönen and Wade, 2015), Escherichia spp. (Yamamoto

et al., 2017; Commander et al., 2017; Chen et al., 2005), Klebsi-

ella spp. (Paasch et al., 2017; Kamal et al., 2017), Desulfovibrio

spp. (Koyano et al., 2015), etc., have been identified as patho-

gens for liver abscess and sepsis. Consistent with previous

studies, UBA11524 (former Faecalibacterium) (Caussy et al.,

2019; Leclercq et al., 2014; Dubinkina et al., 2017; Zhu et al.,

2015; Yun et al., 2019), Coprococcus (Dubinkina et al., 2017),

and Akkermansia (Lowe et al., 2017; Dubinkina et al., 2017;

Grander et al., 2018; Wu et al., 2017) were negatively associated

(FDR < 0.05) with LD. Notably, genus Akkermansia, of which
Cell Metabolism 34, 719–730, May 3, 2022 725
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A.muciniphilawas previously suggested as having potential pro-

tective effect on liver function and gut microbiota ecology (Wu

et al., 2017; Dao et al., 2016; Grander et al., 2018; Kim et al.,

2020), uniquely contributed to every higher rank within phylum

Verrucomicrobia for prediction.

Among the prediction signatures, many bacterial taxa have

been found in association with the development of liver damage.

Intestinal barrier dysfunction, marked by increased intestinal

permeability, plays a key role in the pathogenesis of LD and is

directly associated with cirrhosis (Albillos et al., 2020). At the

genus level, Ruminococcus, Dorea, Faecalibacterium, and Blau-

tia were found to be responsible for increased intestinal perme-

ability (Leclercq et al., 2014), which can induce translocation of

microbes and microbial metabolites and subsequently worsen

hepatic inflammation (Albillos et al., 2020). Conversely, Bifido-

bacterium was found to be negatively correlated with intestinal

permeability (Leclercq et al., 2014). Gut microbial lipopolysac-

charide (LPS) is one of the most potent LPSs that trigger a

cascade of proinflammatory response and promote the progres-

sion of fatty liver (Albillos et al., 2020). Besides, LPS-producing

bacteria are linked to obesity (Zhao, 2013), a major risk factor

for NAFLD (Younossi et al., 2018). Although members of phylum

Bacteroidota (Bacteroidetes) are the largest group of LPS

producers, such as Bacteroides and Prevotella spp., family

Enterobacteriaceae of phylum Proteobacteria and family Desul-

fovibrionaceae of phylum Desulfobacterota_A (Proteobacteria)

exhibit an immense amount of endotoxin activity (Zhao, 2013).

A recent study has shown that endotoxin producers that over-

grow in patients with fatty liver, including strain members of Es-

cherichia and Klebsiella, can induce NAFLD in mice models and

suggested a potential causative role for them inNAFLD (Fei et al.,

2020). The altered gut microbiota composition in cirrhosis is

partially attributed to reduced primary bile acids and increased

secondary bile acids in the gut lumen that are resulted from liver

insufficiency (Albillos et al., 2020). The reduction in total bile

acids in the gut contributes to an overgrowth of pathobiont mi-

crobes, including members of Enterobacteriaceae and Entero-

bacteriaceae (Albillos et al., 2020). The elevation of secondary

bile acids is largely associated with an abundance of bacterial

producers of secondary bile acid, such as members of Clos-

tridium and Eubacterium (Albillos et al., 2020; Wahlström et al.,

2016). Bile salt hydrolase activity is associated with resistance

of hepatocytes to bile toxicity and is broadly present in gut mi-

crobes, including Bacteroides, Bifidobacterium, Clostridium,

and Lactobacillus (Wahlström et al., 2016).

DISCUSSION

In this study, we investigated the potential analytic and clinical

validity of the gut microbiome to improve the prediction of future

LD. Using baseline gutmetagenomic sequencing and 15 years of

EHR follow-up, we developed a framework to predict incident LD

and ALD using machine learning approaches. We demonstrated

that the gut microbiome and conventional risk factor models ex-

hibited similar prediction performances separately, but impor-

tantly, the microbiome-augmented conventional risk factor

models markedly improved the prediction. Furthermore, micro-

biome-augmented models achieved higher prediction accu-

racies for incident LD and ALD than clinical NITs FLI and BARD
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score. These results indicate that the combination of conven-

tional risk factors with gut microbiota may have potential clinical

utility in early risk stratification for LD.

Few studies so far have investigated the prediction of incident

LD events using gut microbiota. Currently, clinical risk prediction

models for LD events are commonly derived from demographic,

lifestyle, and biochemical factors that resulted from routine

blood tests. Although these prediction rules have reasonable

accuracy in clinical practice, they tend to be influenced by extra-

hepatic conditions and have reduced accuracy for early-stage

disease (Vilar-Gomez and Chalasani, 2018; Carbone et al.,

2016). Furthermore, there is a lack of guidance for primary care

and necessity of referral based on the test results, as a large

number of patients with abnormal test results are asymptomatic

during LD progression (Williams et al., 2018; Standing et al.,

2018; H€arm€al€a et al., 2019). Thus, there is an urgent need for

new tools that improve early detection of high-risk individuals.

Our findings are consistent with those of previous studies on

the relationship of bacterial taxa with hepatic function, disease,

and progression, and we identified several taxa with potential

probiotic effects. However, the precise role of gut microbiota is

poorly understood, and our results support the need for spe-

cies-level resolution or indeed greater levels of resolution offered

by even deeper metagenomic sequencing. For example, the

abundance of the Bifidobacterium genus has been reported to

be associated with alcoholism and liver injury in various ways

(Leclercq et al., 2014; Xu et al., 2012): at the species level,

B. dentium has been found to be enriched in advanced LD (Du-

binkina et al., 2017); conversely, B. pseudocatenulatum and

B. bifidum have been recognized as potential probiotics that

may attenuate liver damage (Fang et al., 2017; Nobili et al.,

2018; Gómez-Hurtado et al., 2019). This indicates the impor-

tance of lower-level taxa resolution in interpreting how bacteria

contribute to the disease pathology.

We demonstrated the generalizability of our findings in an in-

dependent cohort of an American NAFLD case-control study.

We showed that the models trained for any LD were able to

distinguish NAFLD cases from controls withmoderate classifica-

tion performance. The attenuated performance of models in this

external cohort can be possibly explained by culturally and

geographically distinct populations (He et al., 2018), a different

study design, and shallower sequencing depth. Moreover, we

demonstrated that the gut microbiome had higher discrimination

performance than individual conventional risk factors in distin-

guishing NAFLD cases from controls and combination of all fac-

tors markedly improved the performance.

Notwithstanding the challenging necessity for validation of

novel biomarkers as well as the development of standards for

interpretation as prerequisites for clinical implementation, our

study provides an evidence base and corresponding risk predic-

tion models for the translation of metagenomic sequencing in

risk prediction of LD.

Limitations of the study
Our study has several limitations. Due to the necessity of a pro-

spective early detection study to consider a large number of

apparently healthy individuals, we were limited in the number

of incident disease cases, and therefore, we were not well-pow-

ered to investigate subtypes and stages of LD, which might lead
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to greater clinical significance. The imbalanced data problem,

where the distribution of cases and controls is not equal, is

almost inevitable in disease prediction studies. It also imposes

challenges to applications of a large variety of machine learning

classification algorithms, as the classifiers tend to bias toward

the more common class. In our study, the imbalanced classifica-

tion is handled with nested cross-validation design (Vabalas

et al., 2019) and stochastic gradient boosting (Friedman, 2002)

for producing robust and unbiased estimates of performance.

The practicality for shallow metagenomic sequencing for a large

prospective cohort also meant that we were not able to evaluate

the added information of deep sequencing to risk prediction. In

addition, due to limited feasibility of LD screening tests at the

population level, we were not able to perform more comprehen-

sive comparisons of the gut microbiome and NITs such as FIB-4.

The prevention measures available to individuals at high risk of

LD are also somewhat limited. These include weight reduction

and alcohol and smoking cessation and may extend to caution

with pharmaceutical prescriptions. Finally, our cohort is of Euro-

pean ancestry, and these prediction models may have attenu-

ated performance in non-European ancestries.
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(yang.liu2@baker.edu.au).

Materials availability
This study did not result in the generation of novel reagents. Data in this study are available with written application.

Data and code availability
The FINRISK data for the present study are available with a written application to the THL Biobank as instructed on the website of the

Biobank: https://thl.fi/en/web/thl-biobank/for-researchers. A separate permission is needed from FINDATA (https://www.findata.fi/

en/) for use of the EHR data. The accession number for themetagenomics data for the validation cohort reported in this paper is avail-

able at the European Genome-Phenome Archive (EGAD00001006364). Predictive models are available at https://doi.org/10.26188/

12554573.v1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study population
The FINRISK population surveys have been performed every 5 years since 1972 to monitor trends in cardiovascular disease risk fac-

tors in the Finnish population (Borodulin et al., 2015, 2018). The FINRISK 2002 study was based on a stratified random sample of the

population aged 25–74 years from six specific geographical areas of Finland (Salosensaari et al., 2020). The sampling was stratified

by sex, region and 10-year age group so that each stratum had 250 participants. The overall participation rate was 65.5% (n = 8798).

The participants filled out a questionnaire at home, then participated in a clinical examination carried out by specifically trained nurses

and gave a blood sample. They also received a sampling kit and instructions to donate a stool sample at home and mail it to the

Finnish Institute for Health and Welfare in an overnight mail. The follow up of the cohort took place by record linkage of the study
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data with the Finnish national electronic health registers (Hospital Discharge Register andCauses of Death Register), which provide in

practice 100% coverage of relevant health events in Finnish residents. For the present analyses the follow-up extended until Dec

31st, 2016. The study protocol of FINRISK 2002 was approved by the Coordinating Ethical Committee of the Helsinki and Uusimaa

Hospital District (Ref. 558/E3/2001). All participants signed an informed consent. The study was conducted according to the World

Medical Association’s Declaration of Helsinki on ethical principles.

Disease case definitions
The liver disease investigated in this study consists of two groups, alcoholic liver disease (ALD) and a broader range of any liver dis-

ease (LD) according to the ICD-10 codes (Finnish modification). A sample was considered as an incident case of any liver disease if

the follow-up register-based diagnostic classification was under the ICD-10 codes K70 - K77; the alcoholic liver disease was defined

by the ICD-10 code K70. Table S3 shows the numbers of subjects of main categories for any liver disease.

Inclusion and exclusion criteria
The inclusion criteria of FINRISK 2002 cohort have been previously described (Borodulin et al., 2018). Samples with gut microbiome

profiles, phenotype metadata and follow-up all available were included in our analysis (n=7115). The exclusion criteria of our analysis

were: (1) samples with gut metagenomic sequencing yielding <400K reads; (2) presence of baseline prevalent diagnosis of target

disease for prediction; (3) baseline pregnancy during the survey year. Altogether, 41 cases of incident ALD in 7005 samples and

103 cases of incident LD in 6965 samples were considered for modelling analyses.

Case-control study for validation
Participants were drawn from the Twins and Family cohort recruited at the University of California, San Diego (UCSD) NAFLD

Research Center between December 2011 and December 2017 (Table S1). All participants underwent exhaustive clinical research

visit and provided stool samples which were collected and immediately stored at -80�C. The study design, clinical assessments and

metagenome profiling have been detailed previously (Caussy et al., 2019; Oh et al., 2020). Definition for NAFLD was in concordance

with the American Association for the Study of Liver Study (AASLD) Practice Guidelines (Chalasani et al., 2012). All participants pro-

vided written informed consent.

METHOD DETAILS

Phenotype metadata
The phenotype data in this study comprised of demographic characteristics, life habits, disease history and medications, laboratory

test results and follow-up EHRs. Baseline phenotype variables used as conventional risk factors included age, sex, body mass index

(BMI), waist-hip ratio (WHR), smoking status, alcohol consumption, triglyceride (TRIG), gamma-glutamyl transferase (GGT), high-

density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol measurements. BMI was computed as the weight in kilograms

divided by the square of height in meters measure with light clothing(Borodulin et al., 2018). Smoking status described whether a

participant was a current daily smoker at the time of the survey. Alcohol consumption, based on self-reported questionnaire, was

measured as the average weekly pure alcohol use in grams during the past 12 months. TRIG, GGT, HDL and LDL- cholesterol

were measured from blood samples collected from participants advised to fast for at least 4 hours prior to collection and avoid heavy

meals earlier during the day (Borodulin et al., 2018, Juutilainen et al., 2012, Havulinna et al., 2016). Baseline alanine aminotransferase

(ALT) and aspartate aminotransferase (AST), which were measured in a sub-sample of subjects, were included for developing non-

invasive test scores of liver diseases. Themedian follow-upwas 14.84 years and the end point was the date of death or last follow-up.

Incident disease was coded as a binary variable indicating disease case (1) or non-case (0) with matched time from baseline to event

or end of follow-up also utilised for analyses.

Metagenomic sequencing and taxonomic profiling
Stool samples were collected by participants andmailed overnight to Finnish Institute for Health andWelfare for storing at -20�C; the
samples were sequenced at the University of California San Diego in 2017. The gut microbiome was characterized by shallow

shotgun metagenomics sequencing with Illumina HiSeq 4000 Systems. We successfully performed stool shotgun sequencing in

n = 7231 individuals. The detailed procedures for DNA extraction, library preparation and sequence processing have been previously

described (Salosensaari et al., 2020). Adapter and host sequenceswere removed. To preserve the quality of data while retainingmost

of the disease cases, samples with sequencing depth less than 400,000 were excluded from our analysis. The metagenomes were

classified using default parameters in Centrifuge 1.0.4 (Kim et al., 2016), and using an index database based on taxonomic definitions

from the Genome Taxonomy Database (GTDB) release 89 (Parks et al., 2018) (Wick and Méric, 2019).

Characterization of the gut microbiome
The gut microbial composition was represented as relative abundance of taxa. For eachmetagenome at phylum, class, order, family,

genus and species levels, the relative abundance of a taxon was computed as the proportion of reads assigned to the clade rooted at

this taxon among total classified reads of this metagenome. The relative abundance of a bacteria that had no reads assigned in a

metagenome was considered as zero in the corresponding profile. We focused on common and relatively abundant taxa of a
e2 Cell Metabolism 34, 719–730.e1–e4, May 3, 2022
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within-sample relative abundance greater than 0.01% in more than 1% of samples. The centered log-ratio (CLR) transformation was

carried out on abundance data by taking the log of taxa abundance divided by geometric mean of abundance in each metagenome

profile. Abundance of zero was replaced with a value representing 1/10 of the minimum abundance in a metagenome before trans-

formation. In this study, all analyses except for microbial diversity calculation were based on CLR transformed data.

QUANTIFICATION AND STATISTICAL ANALYSIS

General framework of prediction modelling
Prediction models were developed for any liver disease and alcoholic liver disease at phylum, class, order, family, genus and species

levels separately. For each incident disease to be predicted, samples were randomly shuffled and partitioned into a training cohort for

discovery and a validation cohort for evaluation at a 7:3 ratio according to the target disease variable such that the distribution of

disease cases and healthy controls in training and testing datasets were consistent. Within the training set, we first performed

pre-selection of features (detailed in next section) and then developed models using pre-selected features through 5-fold cross vali-

dation stratified according to the prediction target, which further created random splits of internal training and testing sets at a 8:2

ratios five times with testing sets beingmutually exclusive. Themodels were optimized based on cross-validated results. The optimal

models were then trained on the full training set and finally assessed on thewithheld validation set that was excluded from the training

and optimization process to avoid data leakage from the training set. Considering the variation of attribute distributions that can occur

during random data partitioning, we repeated the whole process described above 10 times and reported the average and IQR results

(given in parentheses). The detailed procedures were elucidated in the rest of this section.

Pre-selection of microbial taxa
To select a set of informative microbial taxa that were individually associated with incident liver disease, we analyzed the relationship

between microbial abundance and incident disease using (1) logistic regression adjusted for age and gender, (2) Cox regression for

time to disease occurrence adjusted for age and gender, and (3) Spearman correlation. This feature selection step was performed

only within the training datasets accounting for 70% of samples. A microbial taxon was included in further analyses if statistical sig-

nificance (P<0.05) was found by any of the above three methods. After adjusting for age and gender, on average 8 phyla, 14 classes,

35 orders, 103 families, 299 genus and 406 species were associated with incident ALD at statistical significance using logistic regres-

sion; 8 phyla, 14 classes, 36 orders, 106 families, 306 genera and 416 species were found significant using cox regression. The

Spearman correlation found 7 phyla, 12 classes, 36 orders, 112 families, 314 genera and 428 species, on average, significantly corre-

lated with alcoholic liver disease. For LD, the average numbers of significantly associated taxa at each taxonomic level were 7 phyla,

10 classes, 19 orders, 49 families, 157 genera and 245 specieswith logistic regression; 7 phyla, 10 classes, 20 orders, 52 families, 164

genera and 255 species with cox regression; 5 phyla, 8 classes, 19 orders, 51 families, 148 genera and 218 species with Spearman

correlation. As the selected taxawere not always agreed by all three approaches, taxa selected by any approach in the training cohort

were included for developing prediction models with the corresponding data partition. Of the 10 differently sampled training sets, the

average numbers of microbial features at phylum, class, order, family, genus and species levels were 10, 16, 42, 123, 355, 508 for

predicting incident ALD, and 9, 12, 25, 62, 194, 303 for predicting LD, respectively.

Microbial and conventional features
Conventional risk factors include baseline age, gender, BMI (kg/m2), WHR, alcohol consumption (g), smoking status, TRIG (mmol/l),

GGT (U/L), HDL and LDL cholesterol (mmol/l). Microbial features comprised taxa abundance along with microbial diversity metrics at

phylum, class, order, family, genus and species levels. To characterize microbial diversity in samples, Chao1 index, Pielou’s even-

ness index and Shannon diversity index were calculated using raw abundance data without filtering. Chao1 index estimates the total

species richness for a given community considering the presence of rare species. Pielou’s evenness index measures how evenly the

species are distributed in a given sample. Shannon’s index takes into account both species richness and evenness.

Model development
Themachine learning approach extreme gradient boosting was applied to predict the incidence of liver disease from baseline pheno-

type and microbial data using Xgboost library in R. Xgboost is a distributed and optimized implementation of gradient boosting de-

cision trees, an ensemble method of sequential and additive training of trees with regularizations (Chen and Guestrin, 2016). In the

boosting process, each decision tree is a base learner that learns the errors from the previous tree. At each iteration, randomized

sampling approach is implemented to increase robustness of the base learner (Friedman, 2002). The trees are trained iteratively

in a sequence to minimize the errors and are finally aggregated to make a strong learner (Friedman, 2001). The prediction procedure

was a twofold process which involved developing models using microbial features alone and in combination with conventional risk

factors. In the first step the gradient boosting classifiers were trained onmicrobial features consisting of taxa abundance and diversity

metrics at different taxonomic levels separately. In the second step, microbial features selected by the embedded feature selection of

gradient boosting classifiers in the first step, together with conventional risk factors, were deployed to predict incident disease. The

models were trained with Bayesian optimization (mlrMBO in R) through 5-fold cross validation in the training dataset. The optimal

models selected based on cross-validated results were evaluated in the withheld evaluation dataset as the final performance for

predicting incident disease. The highly ranked and frequently selected (by more than half of the models) microbial features were
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considered as predictive signatures for further interpretation. Since logistic regression was one of the most widely used statistical

tools for building clinical prediction models, we compared its prediction performance with gradient boosting classifiers using the

same training and evaluation sets. In addition, we performed Ridge regression, which wasmore suited to correlated microbiome fea-

tures by adding an L2 penalty term to the loss function, following consistent data partitioning strategies. The Ridge regression was

optimized by a fine grid search of parameters with cross-validation of the same divisions of folds as the gradient boosting classifier.

Reference models with conventional methods
Currently, predictionmodels for liver disease are commonly built by regressionmethods of conventional risk factors. Therefore, refer-

encemodels were built using logistic regression of commonly used liver disease predictors including age, gender, BMI (kg/m2),WHR,

alcoholic consumption (g), smoking status, TRIG (mmol/l), GGT (U/L), HDL and LDL cholesterol (mmol/l), as a benchmark procedure.

Model evaluation
The prediction performance of all models was evaluated in the corresponding withheld validation dataset (30% of samples) that were

not used for discovery. The area under the receiver operating characteristic curve (AUROC) was used to compare the performance

acrossmodels of differentmethods and features. Differences in prediction performancewere testedwith one-sidedWilcoxon-signed

rank test with continuity correction. The AUROC is awidely appliedmetric that considers the trade-offs between sensitivity and spec-

ificity at all possible thresholds for comparing the performance across various classifiers with a baseline value of 0.5 for a random

classifier. Area under the precision-recall curve (AUPRC) was provided as a complementary assessment, particularly when con-

structing risk models combining microbiome and conventional risk factors. AUPRC considers the trade-offs between precision (or

positive predictive value) and recall (or sensitivity) with a baseline that equals the proportion of positive disease cases in all samples.

Since AUPRC ismore sensitive to higher ranks of the positive class, it is preferred for highly imbalanced datasets where, for example,

case numbers are small relative to controls. As the entire model development process was repeated 10 times, following the 10

randomly sampled partitions of training and validation datasets, each data partitioning led to a set of optimal models developed

in the corresponding training dataset. The final performance of optimal models developed from discovery data was evaluated in

the corresponding validation data that were set apart in the beginning. The average results of data partitions were reported. To further

assess the final prediction result, we considered the species-level microbiomemodels using gradient boosting classifiers, which out-

performed microbiome-only models based on other taxonomic levels for both LD and ALD. In the withheld validation datasets of

various partitions, Cox regression models of conventional predictors and in combination with predicted scores of microbiome-

only models were built using the time difference between baseline and follow-up disease occurrence or the end of follow-up. The

Cox models were evaluated by the concordance statistic (c-statistic). The fit of the model was assessed by likelihood ratio test.
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